
7T4 96-. 7. -.

4'~. ANALYSIS OF MILITARY
ORGANIZATIONAL EFFECTIVENESS

(AMORE)

Oct PROGRAMMER'S MANUAL

APRIL 1981

Prepared for: U.S. Army Concepts Analysis Agency
8120 Woodmont Avenue
Bethesda, MO 20014

By: SCIENCE APPLICATIONS, INC.
17 10 Goodridge Drive
McLean, VA 22102

Contract No: MDA-903-80-C-0409

DTtO
ELECTE
JAN 30 18

w DISTRIBUTION STATEMENT A s 8:
Apmw m1.fa publo ic auL Diutz~utdm Unlimitd

84 01 30 02 C)

VI -

DEPARTMENT OF THE ARMY
US ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY

WHITE IANOS MISSILE RANGE. NEW MEXICO 83002

ATOR-TSL Statio

SUBJECT: Letter of Transmittal DTIC System

Defense Technical Information Center
ATTN: DTIC-DDA-2 (Frank Greer)
Cameron Station

Alexandria, Virginia 22314

Request the enclosed document be accepted into the DTIC System with the

distribution statement as shown on the accompanying DD Form 1473. The

citation is in the DROLS System under ADF050087.

FOR THE DIRECTOR:

1 Encl
as LTC, AGC

Chief, Support Services Division

SEZCURITY CLASSIFICATION OF THIS PAGE (Wfe- Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPOT Mum2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

lo' 4. TITLE (d Siobtltle) S. TYPE OF REPORT & PERIOD COVERED

Analysis of Military Organizational Effectiveness Final Report
(AMOE) rogrmers Maual6. PERFORMING ORG. REPORT NUMBER

7. AUTigOR'a) S. CONTRACT OR GRANT NUNBER(s)

MDA-903-80-C-0409

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Science Applications, Inc.
1710 Goodrldge Drive
McLean. Virginia 22101 ______________

it. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Coummander, USACAA April 1981
8120 Woodmont Avenue 13. NUMBER OF PAGES

Bethesda, Maryland 20014 .157

14. MONITORING AGENCY NAME & AOORESS(iI different frow Controlling Office) 1S. SECURITY CLASS. (of this report)

Unclassified
IS&. DECL ASSO Fl CATION/ DOWNGRADING

SCHEDULE

14L DISTRIBUTION STATEMENT (of this Report)

Distribution Statement A: approved for public releasfdistribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstraeg entered In Block 20. It different from, Repor)

141 SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse, side It necessay end Identify by block number)

AMORE
Unit capability

211, Awr"Ac? mmesm me #evom sdoit nevemeep an fdeatlip by block mmbeuw)

The analysis of military organizational effectiveness (AMORE) methodologytpro-
vides a means for the analysis of unit response to degr dation and its re overy
of capability over time. The methodology considers both the personnel and'
equipment of the organization. The interaction of these elements to form teams

~ which contribute to organizational capability is also treated. Following a sim-
ulated degradation of the organization, reorganization is accomplished toachiev
the maximum capability in the minimum time. The capability, as a functioj of
time following degradation, is provided by exercising thp snftw~rP_ Additllna

0O 1 FO' W3 awJ o ETor IF NOV 651IS OBIOLETIE

SECURIlY CLASSIFICATION OP THIS PACE (WAn Date En~tered

SECURITY CLAMSIICATION OF THIS PAGEWenI Dole Zaatmi)

data is provided for a detailed analysis of the organizationA weaknesses as
'~ .:...:j~,well as its strengths. This manual provides details of the software

utilized. A companion User's Manual (ADA111267) provides the analyst/user a
basic understanding of the methodology, the unit analysis, and development
of input for the software. An updated User's Manual (ADA128045) is also
available.

*17

4P

*44,T LASFCTONO HSPAEWe at ~trd

PREFACE

The purpose of this manual is to provide programming personnel

and analysts with details of the AMORE model necessary to effect proper

and effective maintenance of the model.

The AMORE model is provided to U.S. Army Concepts Analysis

Agency as a part of contract MDA 903-80-C-0409, "Study of Sustainable

Loss Rates."

This manual provides a general description of the AMORE

model and its structure in Section 1. A more detailed system descrip-

tion is provided in Section 2. Section 3 provides a detailed descrip-

tion with flow charts of each of the subroutines of the model and

Section 4 provides a discussion of the operating environment for the

UNIVAC system. This manual is intended for use with the corresponding

User's Manual, furnished under separate cover.

lite

-UU U.rwq , k4. -q w., % .. . -.. . .

TABLE OF CONTENTS

SECTION PAGE

PREFACE

TABLE OF CONTENTS ii

LIST OF FIGURES iv

LIST OF TABLES v

1 GENERAL 1-1

2 SYSTEM DESCRIPTION 2-1
2.1 General 2-1
2.2 Dimensioning 2-1
2.3 Common Blocks 2-7

3 COMPONENT DESCRIPTIONS 3-1
3.1 INPUTD 3-1
3.2 Subroutine USTMM (NPDSET) 3-9
3.3 Subroutine INITL (NPDSET) 3-16
3.4 Subroutine KILL (MP, NN) 3-21

) 3.5 Subroutine MAXT (MP, MF, NUMTRY) 3-25
3.6 Subroutine TRANS (MP, NUMTRY, MF, IS, ILV) 3-27
3.7 Subroutine CAPT (MP, MF, NUMTRY) 3-52
3.8 Subroutine ICAP (JMIN, JMAX, ITEAM, NTASK

MF, MAX, IS) 3-55
3.9 Subroutine WHEN (MP, RTN) 3-57
3.10 Subroutine RCAP (MAX, ITEAM, RTN, NTASK,

NT3, TOT, MF, MP) 3-65
3.11 Subroutine ASN, (MP, MF, NUMTRY) 3-67
3.12 Subroutine CHOKE (MP, MF, NUMTRY) 3-71
3.13 Subroutine STAT (TMEAN, TOTCAP, SD, GMEAN, GSD) 3-81
3.14 Subroutine OUTD (TMEAN, SD, GMEAN, GSD) 3-83
3.15 Subroutine OUTS 3-89
3.16 Subroutine PRNT 3-92
3.17 Subroutine OUTA 3-98
3.18 Subroutine PRNTS (J, K, L, KOUNT) 3-98
3.19 Program PARAM 3-105

4 OPERATING ENVIRONMENT 4-1
4.1 Hardware 4-1
4.2 Support Software 4-2

ii

, , , , ,. ,. ,.,, , , , ,- - , . , ., .

TABLE OF CONTENTS (CONT.)

SECTION PAGE

APPENDIX A

A MUNKRES' ALGORITHM A-i
A.1 General A-i
A.2 Algorithm Operations A- 3
A.3 Alternate Optimal Solutions A-20

(LIST OF FIGURES

FIGURE PAGE

2-1 AMORE Functional Flow Chart 2-2

3-1 Subroutine INPUTO 3-3
3-2 Subroutine COSTMM 3-11
3-3 Subroutine INITL 3-17
3-4 Subroutine KILL 3-23
3-5 Subroutine MAXT 3-26
3-6 Subroutine TRANS 3-29
3-7 Subroutine CAPT 3-54
3-8 Subroutine ICAP 3-56
3-9 Subroutine WHEN 3-58
3-10 Subroutine RCAP 3-66
3-11 Subroutine ASN 3-69
3-12 Subroutine CHOKE 3-74
3-13 Subroutine STAT 3-82
3-14 Subroutine OUTD 3-85
3-15 Subroutine OUTS 3-90
3-16 Subroutine PRNT 3-94
3-17 Subroutine OUTA 3-99
3-18 Subroutine PRNTA 3-101
3-19 Subroutine PARAM 3-107

APPENDIX A

A-1 Tasks (Demands) A-i
A-2 Munkres'Algorithm A-4
A-3 The Initial Cost Matrix A-6
A-4 Cost Matrix Following Step One A-7
A-5 Cost Matrix Following Step Two A-8
A-6 Cost Matrix Following Step Three A-9
A-7 Cost Matrix Following Step Four A-12
A-8 Cost Matrix Following Step Two A Second Time A-12
A-9 Cost Matrix Before Entering Step Five A-13
A-1O Cost Matrix Following Step Five A-14
A-11 Cost Matrix Following Step Three A-15
A-12 Cost Matrix Following Step Four .A-15
A-13 Cost Matrix Following Step Two A-16
A-14 Cost Matrix Following Step Three A-17
A-15 Cost Matrix Following Step Five A-17
A-16 Cost Matrix Following Step Three A-18
A-17 Solution Payoff Matrix Following the Last

Iteration of Step Four A-19
A-18 The Final Cost and Allocation Matrix A-19
A-19 Original Cost Matrix A-21
A-ZO The Payoff Matrix A-21

iv

mY - .7; '777N.'

FIR LIST OF FIGURES (CONT.)

FIGURE PAGE

A-21 Finding a Chain for Reallocation A-22
A-22 Finding a Chain for Reallocation A-22
A-23 Finding a Chain for Reallocation A-23
A-24 Finding a Chain for Reallocation A-23A-25 Finding a Chain for Reallocation A-23

A-26 The Reallocation Chain Completed A-24
A-27 Alternate Solution A-24

LIST OF TABLES

TABLE PAGE

1-1 AMORE Model Hierarchy 1-2

V

SECTION 1

GENERAL

Program AM4ORE is written in ANSI FORTRAN and consists of

eighteen subprograms and a MAIN routine. The subroutines may be cate-

gorized as two input routines, one file handling routine, ten

functional routines, and five output routines. The MAIN routine per-
forms no function other than the control of the subroutine operations.

The model is constructed in three levels of hierarchy: Level 0, MAIN;
Level 1, those subroutines called by MAIN; and Level 2, those subrou-
tines called by a Level 1 subroutine. Table 1-1 provides a display of
the model hierarchy along with a brief description of each subroutine

function.

The general functioning of the model may be described as

follows:

A stochastic assessment of the degradation of assets (per-

sonnel and materiel), based on input probabilities of degradation is

made.

The surviving assets are then assigned, by use of a trans-

portation algorithm, to satisfy the demands of a particular require-

ment (team). The largest requirement which can be satisfied is found
using a binary search technique. The search results in.selection of

a particular set of requirements for the application of the transpor-

tation algorithm. The cost used- by the transportation algorithm is

defined as the time required for a particular asset to become oper-

ationally effective in some task (the demand). Assiqnments are made

in a manner which will provide a solution with minimum total time cost.

Alternate optimal solutions may le examined if desired.

L-71~e IN d 7 17 7 r Z7

TABLE 1-1 AMORE Model Hierarchy

LEVEL 0 AMORE MAIN Control of all Processing

LEVEL 1 LEVEL 2

INPUTO Read & store input data, except PD's

(Loop each PD set)

COSTMM Read PD's and decision times, set
up cost arrays. If all PD's read -

STOP.

INITL Initialize storage files for each
new PD set

(Loop on Iterations)
(Loop on Personnel/Materiel)

KILL Stochastic damage application -
establish survivor arrays

(Loop on Missions)

MAXT Establish maximum number of teams
that can be constructed (NUMTRY).
If dummy resources or invalid trans-
fers are required by TRAMS decrease
NUMTRY, otherwise increase

TRANS Allocate resources to fill the demands
of team # - NUMTRY

CAPT Determine teams available at times of
interest

ICAP Determine initial capability teams
available from survivors with no trans-
fers.

WHEN Determine when transfered and/or
repaired assets will be available

RCAP Determine the number of teams which can
be formed at each time from available
assets

(OPTIONAL) Store assignment data for teams built,
ASN accumulate data for iterations that

result in the same number of teams built

1-2

if * I *~*'~ %..- , - *. ., .!

I'- n ., *C'w ' , ,;'-.*- .. . * * ...,2-. .. , , .. ,. , .,. ,-.

-~~~P W. C .*

TABLE 1-1 AMORE Model Hierarchy (Cont'd)

LEVEL 1 LEVEL 2

(OPTIONAL) Store and accumulate choke data from
CHOKE each iteration by team, get data from

TRANS allocations for N + 1 teams

TRANS Allocate resources, using dummy supply
and/or invalid transfers, to construct
N + 1 teams

(OPTIONAL)
Entry ALTOPT Search for other optimal allocations -

start from choke point (dummy resource
or invalid transfer) only

(End Missions Loop)
(End Personnel/Materiel Loop)

STAT Accumulate iteration capability sta-
tistics for personnel, materiel, and
unit by time and mission

(End Iteration Loop)

OUTD Calculate average capability and con-
fidence interval for personnel, materiel,
and unit; by time and mission;calculate
integral of unit capability over time

(OPTIONAL) Read stored choke data and control for
OUTS PRNT

PRNT Calculate average needs and surpluses,
and their standard deviations for each
choke team, Print choke output

(OPTIONAL) Read stored assignment data and control
OUTA for PRNTA

PRNTA Calculate average assignments for each
team built and print assignment matrix.

(End PD Loop)

1-3

After the maximum requirement which can be met is established,

each incremental requirement (team) up to that maximum, is examined to
determine when the-allocated assets will be available, and, consequently,

when each team will be complete. This is done using a random number

drawn from an exponential distribution. This process establishes

the time that each individual or item is available in its allocated

position. This then determines the time when each team is completed.

The next step is to apply the transportation algorithm

using the next higher set of requirements (the next team). This serves

to identify those assets that are required by, or critical to, the

satisfaction of the next higher requirement. Assets which are sur-

plus to that requirement are also identified.

Because of the stocha.stic processes of the model it is

necessary to replicate the above steps several times to derive expec-

ted values. Each replication of the damage application may process

several sets (missions) of requirements (teams). Processing is also

completed for two different types of assets (personnel and materiel).

The basic difference in the processing of these assets is that sur-

vivors in the materiel category are divided into two additional return

categories representing light and moderate (or crewi and unit) repair.

rhe fraction of total teams completed at the times of interest is

stored for each replication. Additionally, the minimum of the per-

sonnel and materiel values at each time, representing the maximum

unit capability, is stored. These values are averaged over all itera-

tions and ninety percent confidence intervals are calculated for

output after completion of all iterations.

I The assignment matrix, allocations made by the transpor-
tation algorithm, and choke data, needs and surpluses for the next

1-4

higher team, are stored according to the team and mission number.

These values are averaged over the number of iterations of occurrence

and output when all replications are completed.

1-5

% * B d * * .-.
• ' " " • ' . . " " "- '

-i '~ SECTION 2

SYSTEM DESCRIPTION

2.1 'GENERAL

Figure 2-1 is a flowchart of the AMORE model in terms of

the major functions performed. Each of the functions is keyed to

the subroutine(s) which perform that function. This figure is also

basically a flowchart of the MAIN routine. Details of each sub-

routine are provided in Section 3.

2.2 DIMENSIONING:

The required dimensioning of all arrays is determined by

six of the input variables: NTIMES, the number of times at which

capability is to be computed; NTASKS(1) and NTASKS(2), the number

of personnel and materiel task. entries; the sum of all elements in

the array of initial quantities REG(J,I), where I = 1 for personnel,

I - 2 for materiel, and J = all task numbers; NMISON, the number of

missions; and NTEAMS, the number of teams of the unit. These vari-

ables are used to compute a total of 19 parameters required for

dimensioning within AMORE. Those parameters are defined below with

their uses in dimensioning.

2.2.1 NIMES

The maximum number of times, the input NTIMES must be

less than or equal to this value.

Usage: TIMES(N11MES)
TIMEST(NiiMES)

2.2.2 N11KSI

The maximum number of personnel task lines, the input

NTASK(1) must be less than or equal to this value.

Usage: PERDLY(N11KS1)
PERPD(N11KS1)
TRANP(NI1KS1,N11KS1)
COSTP(!11KS1,N S11KS1)ITEAMIP(N11AM$,N11SON,N11KS1)

! 2-1

READ IN

~1. DATA

NOYES O DERMN

SE pMSDONE ? EANDM O

INUT I STT ETRMN

LOOP ONSRN

CHOTRTATIONLTOP

THS C E

FiguNo LOOP ONOR YES~la CALCULATE

DONE? PRSONELDONE? SATITI2
THE MAEV THIS~ ITERATION-

*IW-VW II- . *-*- - - -r * . -- -W-- - -- -- - 7

2.2.3 NI11KS2

The maximum number of materi el lines, the input NTASKS(2)

must be less than or equal to this value.

Usage: MATDLY(N11KS2)
MATPD(N11KS2,3)
REPTIM(Nl1KS2 ,2)
TRANM(N11KS2 ,N11KS2)
COSTh(N11K9 ,N11KS2)
ITEAMM(N11AMS ,IN11SON ,N11KS2)

2.2.4 N11NDS

The maximum number total of all personnel and materiel items.

(.he program PARAM adds 100 to allow some chance to authorizations
without recompiling the model).

Usage: RAND(N11NDS)

p2.2.5 N11SON

The maximum number of missions, the input NMISON must be

less than or equal to this value.

Usage: TMEAN(N11K1,.NI1SON,3)
SD(N11K1 ,N11SON,3)
TOTCAP(N11fK-1,N1 1SON,2)
TOT(PI11K1 ,N1ISON,2)
ITEAMP(N11ARM 1SON,NI1KS1)
ITEAMM(N11AMS ,N11SON ,N11KS2)
ITEAM(N11AMS,N11SUN,IN11SK1)

2.2.6 N11AMS

The maximum number of teams, the input NTEAMS must be

less than or equal to this value.

Usage: ITEAMP(N11AMS,N11SON,N11KS1)
ITEAMMI(N11AtIS ,N11SON ,N11KS2)
ITEAM(N11AMS ,N11SON,N11SK1)

2-3

2.2.7 N1 1SK1 -

The larger of N11KS1 or N11KS2.

Usage: AVEN(N11SK1)
ANEED(N11SK1)
MINN(N11SK1)
MAXM(N11SK1)
REG(N11SK1 .2)
RETURN(N11K4 ,N11SK1)
RTN(NllK4,NllSK1)
TA S K (N11 S K1 ,, 2)
ITEAM(N1 1AMS , N11 SON , N11S K1)

2.2.8 N11SK3

The larger of N11KS1 or (3 x N11KS2).

Usage: ASURP(N11SK3)
AVES(N11SK3)
IS(N11SK3)
ISOURC(N11SK3)

Ash- MAXS(N11SK3)
)Lam MINS(N11SK3)

2.2.9 N1lK1

N11MES plus 3, the maximum number of times of interest

plus zero time, minimum capability time, and infinite time.

Usage: GIIEAN(N11K1 ,N11K2)
GSD(N11K1 ,N11K2)
TOTCAP(N11K-1,N11SON ,2)
TOT(N11K1 ,1SON .2)
TMEAN(N11k1 ,N11SON,3)
SD(N11K1 ,N11SON,3)

2.2.10 N11K2

N11SON minus 1, one less than the maximum number of

missions. If (N11SON-1) equal zero,N11K2 is set at 1.

Usage: GMEAN(Nl1Kl,Nl1K2)

2-4

2.2.11 N11K4

11MES plus 2, all times for capability calculation except

zero time.

Usage: RETURN(N1K4,N1SK1)
RTN(NI1K4,NIlSKI)

2.2.12 N11K9

N11KS2 times 3, count of maximum number of materiel lines

plus light and moderate damage categories.

Usage: COSTM(N1lK9,Nl1KS2)

2.2.13 N11K1O

N11SK1 plus 1, one more than the larger number of tasks,

adds space for dummy demand.

Usage: IALLO(N11K1I,N1IK1O)
tALLO(N11K1lN11KO)
P(Nl1K11,N11K1O-
Z(N11K1IN11K1O)
JC(Nl1KlOT-
JD(NlIKlO)
WRK(N11K1O)

2.2.14 NIlK11

N11SK3 plus 1, one more than the larger of personnel

tasks or materiel lines times 3, adds space for dummy supply.

Usage: IALLO(N11Kll,N11K1O)
ALLO(NN1K11,N11KlO)
MALLOT(N1K11 ,N11Kl0)
P(NilKTT"N1TKl10)
Z(FI,NlK1O)
I RT Z-1T1)JR(N11K11)

PS(N11K11,3)

2-5

w # ' , ; ; % ; ;; ; :* . .' " "-" " -- -. " -";,- ~ -':'

1-... .. , , . , - . - ', ; ; . -. . ., , ... ,-. - -. . .. , . .

2.2.15 N11K13

(- MRL21)-- N11SK3 times 8, plus 2.

Usage: WORK1(N11K13)

2.2.16 N11K14

N11K1O times N11Kil. Used for dimensioning a work storage

area of sufficient size for all elements of the allocation arrays.

Usage: WORK(N11K14)

2.2.17 NIDX

NIAMS plus 1, times 2, times N11SON, plus 1. The maximum

number of records needed in DEFINE FILE 21 or 22; Choke data for

each numbered team and after all teams for both personnel and materiel

for all miss'ons.

2.2.18 MRL21

(= N11K13)- N11SK3 times 8, plus 2. The maximum record

length for any record of DEFINE FILE 21; for each task plus light

and moderate damaged materiel eight data elements may be stored plus

the number of iterations (element 1) and total solutions (.element 2)

considering alternate solutions.

2.2.19 MRL22

The larger of [N11KS1 x (N11KS1 + 1)] or [N11SK3 x (N11KS2 + 1)]

plus 2. The maximum record length for any record of DEFINE FILE 22; all

data elements of the largest possible assignment matrix including the

surplus column plus the number of iterations (element 1). Element 2

duplicates element 1.

2-6

; I ',' %''w-'," , , ,,,'."...-.-' '...-'r2,-.:-'... -. ..'.-. * , , .. .- ",.-'-* ..-.-..._- - -. : - -,

These 19 dimensioning variables must be available to the AMORE

routine in the form of a FORTRAN PROC element GPARAM. GPARAM is

INCLUDE'd in every component of the AMORE model.

Program PARAM (para. 3.19) provides the capability to read

any data file and calculate the parameters necessary to dimension the

AMORE model. PARAM creates the PROC file GPARAM which AMORE accesses by

an INCLUDE statement in each routine of the model.

2.3 COMMON BLOCKS

The following common blocks are used in the AMORE model.

2.3.1 DLY1

This common block contains the transfer matrices for both

personnel and materiel, the array of repair times for materiel, and

the input flag for use of mean or exponentially distributed return times.

The variables are: TRANP(N11KS1,N11KS1), TRANM(N11KS2, NI1KS2), REPTIM

(N11KS2,2), and IMEANT. It is used in the folowing subroutines: INPUTD,

COST1lT, WHEN, and PRNT.

2.3.2 DLY2

The arrays of personnel and materiel delay times are inclu-

ded in this common block. The variables are: (PERDLY(NIKS1) and

MATDLY(N11KS2). The arrays are established by subroutine COSTMM and

used by subroutine WHEN.

2.3.3 DLY3

This common block contains the cost (total operational delay

for transfer) matrices for personnel, COSTP(N11KS1, N11KS1), and mater-

iel, COSTM(N11K9,NI1KS2), and the variable NOTEN which is the number

of dummy resources required by the transportation algorithm. DLY3 is
used by subroutines COSTMM, MAXT, TRANS, CHOKE, and WHEN.

-.I

2-7

60

1 , :, ' ','... , , ,. .< _ . -, ,...2.

. .- -- - -.- ~ .u. . --
I

I

2.3.4 GENERL

Common block GENERL contains the number of personnel and

materiel tasks, NTASKS(1) and (2); the number of teams, NTEAMS: the

array of times of interest, TIMES(N11MES); the number of times,

NTIMES: and the number of missions, NMISON. This common block is

included in the MAIN routine and all subroutines except ICAP.

2.3.5 INP

The array of task names, TASK(N11SK1,3,2), and the array

of initial authorized quantities for each task , REG(N11SK1,2),are

contained in this common block. The flag, IONLY, for input pro-

cessing only is also included. This common block is used by INPUTD,

COSTMM, and KILL.

2.3.6 KTRI

Common block KTR1 contains the variables BIG and MSURP.

These variables represent large numbers (calculated by subroutine

COSTMM) that are used as costs for non-valid transfers (rIBIG) and

costs for assignments of surplus or dummy resources (MSURP). The

common block KTR1 is included in subroutines COSTMM, MAXT, TRANS,

and CHOKE.

2.3.7 KTR2"

Common block KTR2 contains the input option flags SCHOKE,

ASSIGN, ITRATE, and MULTF. Additionally, the variables ALTAPE, LAST,

and IMAX are included. ALTAPE designates the unit number of a

scratch file used by INPUTD and TRANS. LAST is the count of alternate

solutions found by TRANS(Entry ALTOPT). IMAX is established by a

DATA statement in INPUTD and is used by TRANS to insure that no

2-8

dimension overflow occurs with some small working arrays. The

common block KTR2 occurs in the MAIN routine and in subroutines

INPUTD, INITL, TRANS, MAXT, CHOKE, OUTD, OUTS, and PRNT.

2.3.8 PD1

Common block PD1 contains the arrays of damage probabilities

for both personnel, PERPD(N11KS1), and materiel, MATPD(N11KS2,3).

This common block occurs in subroutines COSTMM and KILL. The arrays

are established by COSTMM and used by subroutine KILL.

2.3.9 PD2

Common block P02 contains the arrays of team requirements

for personnel, ITEAMP(N11AMS,N11SON,N11KS1), and materiel,

ITEAMt(N1AtS',N|hSON,N11KS2). The arrays are established by INPUTD.

The comon block occurs in INPUTD, TRANS, qnd CAPT. Additionally,

the two arrays are passed as calling arguments from CAPT to both

ICAP and RCAP.

2.3.10 PRNTIT

The variables contained in common block PRNTIT are IN,

lOUT, IPGCT, LCONT, AND TITLE(20). IN is a variable unit designator

for the file from which the input is read. lOUT is the unit designator

for the file to which print output is written. IPGCT is the page

count and LCONT is the line counter for the print output. TITLE(20)

is the 80 character title associated with each input damage set. The

common block PRNTIT occurs in the MAIN routine and in subroutines

INPUTD, COSTMM, INITL, TRANS, OUTD, OUTS, PRNT, OUTA, and PRNTA.

2-9

...................... . .-- - .

2.3.11 SEED

Common block SEED contains the seed, ISEED, for the random

number generator. ISEED is initialized in MAIN. The common block

is necessary for the use of the random number generator BARN and is

used in the MAIN routine and subroutines KILL and WHEN.

2.3.12 STATG

Common block STATG contains the arrays TOTCAP(N11K1,N11SON,2j

and RETURN(N11K4,N11SK1). TOTCAP contains the calculated capability

each iteration for all times and all missions for personnel and

materiel. RETURN is an array for each time of interest, except zero

time, of the number of individuals or materiel items available for

performance in each task. The common block is used in MAIN and CAPT.

2.3.13 STATR

Common block STATR contains the arrays where capability

data is accumulated over all iterations. These arrays are: Tf1EAM(.N11KI,

N11SON,3), SD(N11K1,N11SON,3), GMEAM(N11K1,N11K2), and GSD(N11K1,NIIK2).

The common block occurs in MAIN and INITL. The arrays are initialized

to zero in INITL prior to beginning any computations for any damage

set. The arrays are passed as calling arguments from MAIN to STAT

where accumulation occurs over the iterations. They are also passed

from MAIN to OUTDafter the completion of all iterations where average

values are computed for TMEAN and GMIEAN and confidence intervals are

calculated using SD and GSD.

2.3.14 SURV

Common block SURV contains the array of quantities of

ech task (personnel or materiel) which survive the damage applica-

tion, array ISOURC(N11SK3). The array is established in subroutine

2-10

, , _x . ,, . : :.:, ,,,i.V , N; N. ...l.,_.<.-.--..,-.-..-..--

i. . ,,' , . . ,, L. , ,. ,:. -. . . -. -.'.,. .. - . ..- .. .- . . - . •

.~:.:.- KILL. The common block occurs in MAIN and subroutines KILL, MAXT,

• CAPT,and CHOKE. The array is passed from MIAXT and CHOKE to TRANS

and from CAPT to ICAP as an argument for use by those subroutines.

2.3.15 WK1

Common block WKI contains the allocation array, IALLO(N11K11,

NiIKiO), which results from the solution of the transportation problem

in subroutine TRANS. This common block is included in the MAIN routine

and in subroutines TRANS, MAXT, ASN, CHOKE, and WHEN.

2.3.16 WK2

-Common block WK2 contains the array WORK(N11K14) which is

used by several routines as working storage for a variety of data.

The common block occurs in subroutines INITL, TRANS, ASN, CHOKE, OUTS,

PRNT, OUTA, and PRNTA.

O.

2-11

' h ,' ,' '., " " -.. *- ,-, -. . . ° -, ,-.- .- .- - .- .- .- .- , .- ,- .- - .-. . .-. , . .$ **., .. ., .

!, • , ., ~. . . -.. :. . . .-.. r. r . .-. j

SECTION 3

COMPONENT DESCRIPTIONS

This section provides flowcharts and general descriptions of

the component subroutines of AMORE as follows:

1. Subroutine INPUTD
2. Subroutine COSTMM
3. Subroutine INITL
4. Subroutine KILL
5. Subroutine MAXT
6. Subroutine TRANS
7. Subroutine CAPT
8. Subroutine ICAP
9. Subroutine WHEN
10. Subroutine RCAP
11. Subroutine ASN
12. Subroutine CHOKE
13. Subroutine STAT
14. Subroutine OUTD
15. Subroutine OUTS
16. Subroutine PRNT
17. Subroutine OUTA
18. Subroutine PRNTA
19. Program PARAM

3.1 INPUTD

3.1.1 General

Subroutine INPUTD (Figure 3-1) reads the input data from a

file designated unit 5, the standard input unit designator in the

UNIVAC system. The data undergoes a limited amount of processing and data

storage arrays are constructed. Data is formatted for readability and

written to Unit 6, the UNIVAC standard print output unit. A scratch

file, designated Unit 10, and further referred to as ALTAPE, is also

required for use by this subroutine.

3-1

Dimensions are checked as data is read to assure array over-

flows do not occur. The dimensions are established by PARAMETER state-

ments in GPARAM. GPARAM is a PROC file which is constructed by the

program PARAM and made available to the program by INCLUDE statements.

(See paragraph 2.2.)

Processing is straightforward with the exception of the trans-

fer matrices and team requirements. Input definitions and formats are
discussed in detail in the associated User's Manual.

Complexity of processing the transfer matrices is caused by
an attempt to simplify the work of user analysts. The first simpli-

fication for the analysts was to provide a default of blank to -1. In

most cases, this eliminates a large amount of input typing. This was

- - then extended to provide an output of the transfer matrix also void of

-1 and with a period (.) substituted for ease of readability. These

~-. goals were accomplished by reading the original input using an alpha

P format. The period is then substituted for both blank and -1 fields

and the matrix is printed. The period is then converted to -1 and

the matrix is written, as alpha-numeric characters, to file ALTAPE.
V This file is then read using integer format to obtain a transfer matrix

usable by the model.

An effort was also made to reduce the volume of input re-

quired to state the team requirements. The technique uses a task multi-

plier for each requirement input. The multiplier causes the require-

ment to be repeated for that number of task lines. Each requirement

for each task is input as the additional number required for that team.

These requirements are converted to cumulative requirements by team

for use within the model.

3-2

INPUTO

1., START

DATA

ITIMED a N11MES
ITASKD -N11KS1

ITASKM - N11KSZ

ITOTD N11NDS
NTEAWI1 = N11AtiS
NMISON = N11SON

IM4AX 50

LNCNT 50

Print page heading and increment
page count (IPGCT)

Read Option Flags-
'N ITRATE, SCHOKE, ASSIGN,

MULTF, IMEANT, & IONLY

Print option Flags-

-Format determined by IONLY

If any Flag is negative, Print Error Message
If IONLY equal I continue, otherwise STOP

IRead number of times, NTIMES -

If larger than ITIMED print error message

and STO

Figure 3-1. Subroutine rNPUTO

A INU

-Read all times of interest
~(TIMES(J), J-1, NTIMES)

lPrint all times of interest

Check times for ascending order.
If out of order print error message,
if IONLY = 1 continue, otherwise STOP.

Print page heading, increment page
and line count (IPGCT & LCONT)

Read number of personnel tasks, NTASKS(1) -

If larger than ITASKD print error message & STOP

p 1
Read each task name (TASK(J,NT,1))
and authorized quantity CH I '.
(REG(J,1)) J=Task No. - (. 0 (v A L, i
Accumulate total authorized, ISUM

p|

Print task name & authorized quantity

Read number of materiel tasks, NTASKS(2) -
If larger than ITASKM print error message & STOP

Read each task name (TASK(J,NT,2)), authorized quantity (REG(J,2)),
and repair times (REPTIM(J,I)) J - Task No. and I = I for light or
2 for moderate repairs - accumulate total authorized, ISUM

Print task name, authori zed[

quantity, and repair times

Figure 3-1. Subroutine INPUTO (Continned)

3-4

INPUTD

If the total of all authorized personnel
& materiel, ISUM, is larger than ITOTD
print error message & STOP

Check line count, increment page

and print page heading if required

Read transfer times for each personnel task as
alpha characters (2X,A3) - convert blank or -1 fields
to period (.) and print alpha characters for each
task the first 40 transfers or all if less than 40

If more than 40 tasks - for each task examine transfers
to next 40 and convert blank or -1 fields to period(.
and print this secti-on of transfer matrix as alpha

characters - Repeat this process until complete matrix

is printed

Write transfer times for each task in
alpha format to file ALTAPE - Rewind
ALTAPE and read each task transfer

-times integer format to array TRANP

Repeat steps of the preceeding three blocks for
materiel transfer matrix - End with integer
values in array TRANM

X Read number of teams, NTEAMS
and number of mission, NMISON

If NTEAMS greater than NTEAMM1
L print error message and STOP

If NMISON greater than NMISOM

piterror message and STOP I

Figure 3-1. Subroutine INPUTD (Continued)

" * - . *,* *@ .- . ,' .%, :. -. . ', . " r. y W',"+ ,'r'" % % ''.'.% ' _"'' ''.. .%- .', &.%. S.',.%A..

. QINPUTD
j '-..:..% Read team requirements for all teams, personnel then materiel, for

all missions - Team requirements are read by factor, IPRND(M,2) where
M=1,16 and is the number of entries on a card. - The factor determines
the number of tasks the associated requirement will be applied to. -
Factors for each team must sum to the appropriate number of tasks
(personnel or materiel) - Detailed flow chart of this section is
attached. See D

Accumulate team requirements for team 2
thru NTEAMS to include the requirements
of lower number teams

Print team requirements, personnel then materiel,
for each mission. Maximum of eight teams per
page, format determined by number to be printed.

4|
" I RETURN

.1

..Figure 3-1. Subroutine INPUTD (Contirued)

3-6

".-. .""..,

INPUTO (Read and file Team Requirements)

REY N(jNDM1,IR NO2,M,6
JOtA > 6(12,13)

4 +

300ur K-.Sbotn ~PT Cn~u

No0'U -
02

IPTD

e,-,

N IPRND(M,1)

YES WM 1 NO

MM=MM+l

220 ISUM ISUM+ I

ITEAMM(L,J,ISUM)=IPRN(M,2)

Figure 3-1. Subroutine INPUTO (Continued)

3-8

• " " " !'%* " " ".,"' ' ,' ,,,'9 "' .. , - .- ,-.-.. .- . , . , .- .-.-

4 ' 3.1.2 COMMON BLOCKS
.m_

DLY1
GENERL
INP
KTR2
PD2
PRNTIT

3.2 SUBROUTINE COSTMM (NPDSET)

3.2.1 General

Subroutine COSTMM (Figure 3-2) is referenced for each set of
degradation probability values (PDSET) as a cost initialization rou-

tine. For each individual POSET, cost matrices are calculated for

both personnel and materiel categories.

The TITLE array, an array of alphanumeric title words, is

read from the input file for the first PDSET. (If an 'END OF FILE'

is encountered while attempting to process this read, control is trans-

ferred to a program STOP. Therefore this input statement acts as the

normal termination check for the AMORE program model). The TITLE

array is then echoed to the output page and determination of the per-

sonnel probability of damage array begins.

Initially all array elements of PERPD are set to -1.0. The
first input record of damage information is then read. The proba-

bility of damage (TEMPPD(1)) is read, followed by the commander's

decision time to assess damage and initiate recovery (ITEMPD). -On

the same input line an index array (INDEX(j)) of as many as 14 values/

line may follow ITEMPO. The elements of this index array correspond

to personnel task numbers. In this manner, indices of particular tasks

are identified with the ITEMPO and TEMPPD(1) value of the same input

line. (An alternative: When each of the personnel task shares both

3-9

p '.

TEMPPD(1) and ITEMPD with all other personnel items, as single '-I'

can be substituted in place of the entire input INDEX array.) Subse-

quent lines are read until all personnel items have been assigned a

probability of damage value. These values are stored in array PERPM.

Corresponding delay times are stored in array PERDLY. Any attempt to

reassign indices or to assign indices of personnel tasks that do not

exist will result in an error STOP.

The above arrays are then formatted and printed for the

particular POSET.

Similarly, materiel item probabilities of degradation and

delay time (TEMPPD(1), (2) and (3) and ITEMPO respectively) are read

from the input file. The element TEMPPD(1) is the total probability

of damage, all categories. TEMPPD(2) is the probability of moderate

and severe damage, TEMPPD(3) is the probability of severe damage. These

values are stored in array MATPD according to indices read from the

same card. The value ITEMPD is likewise stored in array MATDLY. The

results are then printed.

The next step in COSTMM processing is to check if the cur-

rent run is of an input-only type (IONLY.GE.1). If this is the case,

additional initialization need not be performed and control loops

back to read the next POSET values. Otherwise, certain maximal values

must be calculated. The largest repair time within mission horizon

time (LPAIR), the largest delay time (LDELAY), the largest transfer

time (LTRAN) are determined from existing values. The variable MSURP

is calculated by summing these values, multiplying by two and adding

one. This value is used in TRANS as the cost for assignment of dummy

supply or for assignment as surplus. This large value makes any feas-

ible transfer preferable. Another large cost (MBIG) is then calculated

using MSURP. MBIG serves as a large dummy cost when a transfer is in-

feasible. It is a value larger than the total cost could be if all

transfers made had the largest possible cost.

3-10

START COSTM (NPDSET)

REAM END-STOP(TITLE)INYz

WRITE TITLE TRANSIER TIEwA

L 0
CALCULATE MBIGES

EY ERRORS YES ER RI- -- - - - - - -

GTE PRNEL CAEVLOPUATELRGE
I j CST MARIX DETASTY)

INITIALIZEULAT LARGAREYTO-10T

READ MATS DAMAGE INFO
INTO ARRAYS CLUAETTL1-7-S

NYE YES ERRORAE BI
ERRORS INRSO

NPUTDEEOPESNL

WRITE MAERONEL DETAILO MTEIE

PLR

INTALZ 3-!ARA T -.

COSTMW (READ ANDO WRITE PERSOffNEL DAMIAGE PROMAB[LLTrEs)

3 NAS*14TSl2

100 triOPPO(1) P (NERROR . 4

NTASK STOP

ISU K N
YES

INOEX(j)

NTASC No

YYES

s3-1203

tj

COST4' (READ AND WRITE MATERIEL DAMAGE PROBAILITIES)

'~ '-20zo Kn!(NTASK*(NTASK,1))/2

READ(IN.1007)(TE4PPD J,J-1,3),IT 0P, INDEX(L) L-1.12)

YES j 2 NOJ 3
J J*1

220 PC(J- YES ERROR
c

SSTO

ERRO

YES(ID1)TNP 1 JO STOP

j J T PDIN3UEPP()AT(J)rl.P()

YES~IU*IDX NJ)(J ERROR,)ENPD3

YETSY J)IITO ND

-SYES

TPO(J1) INE-13

YES J N

NOJ NTS

~~ERO j - J ~ S~ S V j,. V &§i:l-.*

* -~ w-~ - 7 77 v- Frrw-!. w

COSTMM (CONSTRUCT PERSONNEL COST MATRIX)
DETAIL
C

NP)NTASKNTASKS1

COST(JK ~iIG CSTPJ,K)=TAN(J,K

YES j -1EN

., NO,
)

I CosTP~ ~~ (.K)= TP (J, K PERDL Y Jj

J
FLOAT(CSTP(J,K)) >TTLST

YES

Figure 3-2. Subroutine COSTMMI (Continued)

3-14

-47 -- W-..

COSTH (Construct materiel Cost Matrix)

DETAI

g~ie

NO' <i >
CNTS~hJT5*,(AO~(,)EI

YES KJ ISKZ) COSTH (J ,COSTM(JK
*MBI

4810+N

AS

YE K

+CO

T

NO CO.M J.#4TAJ2,KUMBI

~igurM 3-2 YuruieCS~(o~nES

3-IES

"(2 The cost matrix for personnel items (COSTP) is develooed from

the input transfer matrix (TRANP) and delay time array (PERDLY). (Any

unfeasible transfers are assigned a cost of value MBIG.)

Similarly, a materiel cost matrix is built (COSTM). How-

ever v hen calculating materiel costs, repair times for light damage

(REPTIM (j, 1)) and those for moderate damage (REPTIM(j, 2)) must be

included and the array, COSTM, is extended with separate sections for

light and moderate damaged equipment.

3.2.2 COMMON BLOCKS

OLY1
DLY2
DLY3
GENERL
INP
KTR1
PD1
PRNTIT

3.3 SUBROUTINE INITL (NPOSET)

3.3.1 General

Subroutine INITL (Figure 3-3) is used to initialize certain

arrays and work files to zero values prior to the start of processing.

Initially, the statistical arrays for Subroutine STAT are

set to zero .(TMEAN, SD, GMEAN, GSD). The work array elements, following

determination of an adequate maximal number of the elements (I), are

also set to zero.

If the choke flag indicates that choke data is not desired

for this particular run (SCHOKE<O), then choke variable initialization

may be omitted. Otherwise both materiel and personnel record length

3-16

* INITL (NPDSET)

START

('.DETAIL INITIALIZE VBLS FOR
A STATISTICS CALCULATIONS

TO-0. (SED IN STAT)

DETAILI INITIALIZE WORK ARRAY TO
8 ZR PRIOR 76TALCULATIONS

DETAIL FOR CHOKE:
C CAEUMM'E VBLS

CONCERNED WITH
DEFINE FILE #21;
WRITE WORK ARRAY TO
FILE #f-T

YES
ASSIGN s RETURN

0

DETAIL FOR ASN:
D CALCULATE VBLS

CONCERNED WITH
DEFINE FILE #22;
WRITE WORK ARRAY TO
FILE #=TOR BOTH PERS

Figure 3-3. Subroutine INITL

3-17

* * * * * .

DETAIL (ZERO STATISTICS ARRAYS)

~- (2...T3uNTI!IES+3

YESI4N

DETAI JZ!(WORKN ARAY

'I~

YE KN

80K4

K'1

.6

rMA(IJ.)O

[S',,)O

' Figur~~~~~~~E33 uruieINT Cniud

3-1

'- z. 7.

INITL

(SET~OEA[UP AN/O ZER OEF FILE 21)

N~~ RLGTI#4NTASK ()7*22*

MUT E

FgRe L-3. SubRLuTHn NT Cotnud

3NO

-, **? * * .~ * . ~ ~ *~~.*q *** j** * *S* ***,tL*GT'* *-/*** * % * % * . a . . * . * * .T -* * ,* * * . * +

INITL

D

RLGTHP-NTASKS(1)*(NTASKS(1)+ 1)+2
RLGTHM-NTASKS(2) *3* aITASKS (L~l ±112

NO
NPDSET

>1 DEFINE FILE 22(NIDX,MRL22,U,I22)

FJue33.SbotneIIL(Cniud

Kw3-2n

* *A -*~** . .V ~ \~ % . *. .- .- -. -. -* I* .- .i

constraints (RLGTHP, LASTP, RLGTHM, LASTM) are determined for the

choke file. This file (#21) is then defined and all elements of all

records are zeroed.

If the assignment flag indicates that no assignment data

is to be output for this run (ASSIGNs 0), then assignment data init-

ialization may be omitted. Otherwise record length constraints (RLGHTP,

RLGTHM) are determined for the assignment file. The file (#22) is

defined and all elements of all records are zeroed.

3.3.2 COMMON BLOCKS

GENERL
KTR2
PRNTIT
STATR
WK2

3.4 SUBROUTINE KILL (MP, NN)

3.4.1 General

Subroutine KILL (Figure 3-4) provides the stochastic appli-

cation of the input damage probabilities. The subroutine is called

by the MAIN routine on each iteration, once for personnel and again

for materiel. The argument MP defines either personnel (1) or materiel

(2). The argument NN is the iteration number and is used for the appli-

cation of a variance reduction technique. The variance reduction tech-

nique is to draw new random numbers on each odd numbered iteration

and to use the complement of those random numbers on the following

even numbered iteration.

The subroutine consists of two sections, personnel and mat-

eriel, which perform the same basic functions. The initial authorized

quantity for each task or materiel line, in array REG, is put into the

3-21

: C.} survivors array, ISOURC. For each individual or item in this quantity

a random number (RANDOM) is obtained. (On odd numbered iterations

the random number is obtained from the function BARN and the complement

is stored in array RAND. On even numbered iterations the random number is

drawn from the array RAND.) RANDOM is then compared to the probability

of damage for this item. If the random number is larger than the damage

probability, this is a survivor. If RANDOM is smaller, then one is

subtracted from the survivors array. In the materiel case, this com-

parison is made against the accumulated probabilities of light, moderate,

and severe damage (MATPO(I,1), where I is the line number). If the

item is assessed as damaged then further comparisons are made of the

random number with the accumulated probabilities of moderate and severe

damage (MATPD(I,2)). If RANDOM is larger than this value, the item is

assessed as light damage and is added into the light damage section of

the survivors array. If RANDOM. is equal or smaller than this last

value, it is compared to the probability of severe damage (MATPD(I,3)).

If RANDOM is equal to or smaller than MATPD(I,3), the damage is assessed

as severe, otherwise it is assessed as moderate damage and is added into

the moderate damage section of the survivors array.

Damage is assessed against each individual or materiel

item in each task or line. The array of personnel or materiel survivors,

ISOURC, in common block SURV results.

3.4.2 COMMON BLOCKS

GENERAL
INP

PD1
SEED
SURV

3-22

(KILL (MP.NN)

START

Figure 3-4. ts Sbotn IL

3-23 a

-. F -J. -- -.A -. -.-.

YESS

rsucr REG2)18

SO-RNOOM NSX) a 0 AP SLR()-

Pfgue 34. ubrotfn KIL (Cntiued

? YES4

* ~ ~ ~ ~ E~ ,** 2).*..-. . ~.

3.5 SUBROUTINE MAXT (MP, MF, NUMTRY)

3.5.1 General

Subroutine MAXT (Figure 3-5) determines the maximum number

of teams which can be constructed using the surviving resources. This

is accomplished using a binary search technique to vary the team number.

Subroutine TRANS is called to determine if a feasible solution

is possible with the existing resources. Subroutine MAXT is in-

cluded within the innermost loop (missions) of the MAIN routine. The

arguments MP and MF distinguish between personnel and materiel and

identify the mission number, respectively. The argument NUMTRY pro-

vides MAIN with the number of teams which could be constructed.

Subroutine MAXT begins its process with a team number at

the mid-point of the range, 1 to NTEAMS. The call is made to subrou-

tine TRANS which allocates the surviving resources to the require-'p ments of this team. TRANS will always provide a solution by either

adding dummy resources or by making infeasible allocations. On input

these infeasible transfers are identified by a minus one (-1) in the

transfer matrix. For use in the transportation algorithm they are

given a very large cost (MBIG) and are therefore the last recourse for

a solutianto the allocation problem. MAXT determines the feasibility

of the solution by examining the requirement for dummy supply and the

cost of the allocations made. NOTEN is the variable which is equal

to the dummy supply required. If NOTEN is greater than zero the solu-

tion is not feasible. If this check shows a possible feasible solu-

tion, then the cost of each allocation is examined. If the cost of

any allocation is greater than or equal to MBIG the solution is not

feasible.

MAXT then adjusts the team number (NUMTRY) for the next try.

If the solution was feasible a higher number team is tried. If the

3-25

- ' ' k' ,.-*4 *.* *._- -.z, *. ' ..- 4,-. 4. .- '. ...-- ,.,v,

START MAXT(MPMF.NLWMY)

MIN - 0

im mAms7il0
NWTRy WMIN + JMAX)/2-
10

t06 TRMS(MPMMMY.,MF.ISOURcl)l

1 NTASK - N'nTA KS MP

YES SOLUTION rS
INOTEN NOT FEASIBLE

0? IF PVTEN > a

No
.40 YES

.MP
'1? 100

SOLUTI N is
YES I FEASM

I XTASK? Jm N YES
r sN37.

YES j 45 1 r+l

J cNTASK? 140 N j a I YES

40 1 - A
J SHTASK?
j a J+l

YES
EALLO(Ili 140

s a?
IALLO(IJ)

so?

STP 10 YES iml NO
(I J) RN a NTEAMS? STM

,:,j):s
IG SOLUTION rS IOT merw
YES 140 FEASIBLE IF CM

1 11'uRIG FOR ANY YES

SOLUTION IS ,IOT AM, R14 I X - -ALLOCATION

FEASIBLz rF COST
>MBIG F5R ANY

V. ALLOCATIONS so

J14AX .40
I? IUMTRY 0 lr J

YES
IWO IX-

Y
I?

Yes .40

ALL nA.14S,'t.IP,:iul4TIY,:IF.:-.-OURC,:

Figure 3-5. Subroutine MAXT

3-26

solution was not feasible a lower team is attempted. After each iter-

ation of this process JMIN is the number of the last feasible team

and JMAX is the number of the last infeasible team. The next attempt

is made for the team number midway between these two. During this

process the variable ILV, last in the argument list for the call to

subroutine TRANS, is set to one (1). This variable flags TRANS to

return immediately if the solution is proved to be infeasible, such

as a requirement for dummy supply. This reduces the number of times

that the full transportation algorithm is solved. The transportation

algorithm is always solved if there is a possibility of a feasible

solution. When the difference between JMIN and JMAX is one, JMIN is

the number of the highest team with a feasible solution. If the last

solution was feasible, control is returned to MAIN. If the last solu-

tion was not feasible then TRANS is called once again, with ILV=O, to

provide the solution for that team, number = JMIN.

3.5.2 COt.ON BLOCKS

DLY3
GENERL
KTR1
KTR2
SURV
WK1

3.6 SUBROUTINE TRANS (MP, NUMTRY, MF, IS, ILV)

3.6.1 GeneraJ

Subroutine TRANS (Figure 3-6) is an application of the Munkres

algorithm to solve an allocation problem. (Munkres algorithm is dis-

cussed in depth in Appendix A.) This subroutine is called by subrou-

tine MAXT and by Subroutine CHOKE. It contains one Entry Point,

ALTOPT, which is entered only by a call from Subroutine CHOKE. Sub-

routine TRANS allocates the surviving assets to satisfy the demands

3-27

of a particular team and mission requirement. These requirements are

established by the calling subroutine through the arguments: MP,

personnel (1) or materiel (2); NUMTRY, the team number (1 to maximum);

and MF, mission number (1 to n). The arguments IS is the array of

surviving assets. The argument ILV is a flag which is used to reduce

the number of times the transportation problem is completely solved.

If ILV is zero the transportation algorithm will be completed. If-

ILV equal 1,quick checks are used to determine if a feasible solution

is possible. If the total demand exceeds the total resources or if

the demand for any one task line exceeds all possible resources for

that line, no solution is feasible. During the search to find the maxi-

mum possible teams it is not necessary to complete the transportation

solution if either of the conditions exists. Other calls set ILV=O

and a full solution is found.

Subroutine TRANS will always provide a solution to the alloca-

t tion problem. It does this by creating a dummy demand if assets ex-

ceed requirements or by creating a dummy supply if requirements are
greater than the assets. The routine may also provide a solution by

making assignments which are considered to be infeasible. These assign-

ments are made using a very large cost (MBIG) which readily identifies

them. MAXT determines if the solution is, in fact, feasible or not

based on the use of dummy supply and/or a cost greater than or equal

to MBIG. The call from CHOKE results in an infeasible solution in all

cases except when all teams can be built.

Entry point ALTOPT is entered only by a call from CHOKE when

the option flag MULTF is greater than zero. This part of subroutine

TRANS searches the original allocations for alternate optimal solutions.

Alternate assignments are examined only for the 'CHOKE' points, that

is allocations of dummy supply (Cost = MSURP) or allocations made with

cost MBIG.

3-28

T2MN (MPNUMTRY, MF, IS, ILV)

START)

RSMELNOTN MATERIEL

310

j I + MI J13t 0 1Ja(JA3

JSU a JSU JD(AI

IA~~~I J >MON 4P>I YS A>r

A~ IA AA

JJO(IA) - ITEAM4(MUMTRYW.,IA)

L(xx isu COSW iXJ-X)i) 1A1

R

'S.

-~

% - : 7 : * -~ .

1

I TRANS

318I (Demand > Resources)

NOTEN =JSUM -IU

IALO(IJA = 0

Figur 3- Surutn TRN (ConTRNd

3-30 NTE

-~~ -, TRANS ..

365 (RESOURCES >DEMAND)

JO (m)u SUM-jSUM

YES ILV
*10

NO

IGGJ=NTASKS(MP)

AJ

in[JJA)RIIA

Fiue=60uruin RN Cniud

TRANS STEP

NO JAA YES

XE XBI + AP(+ ASA

IA JAIA JA).. YES JA >J1N

? ~~ 50 JA J

STEP

N

NO N
JA A+2

Figure)- 3-6 Surutn 0R Cniud

03-3
4* ~NO

*% ~ .**4*******~***. ~ * .-. -.-

TRANS

0, JSTEP

00

NO JA >-? 1 YE

IA I YE "JA > J? 2A

KX.MID(JD(A) ,J(II)

AJA+Il
IAA, O / 13 1 A

NmE IA>I YE A> ? N

JI(A) - J-(A)-KX
IALLO(IA,JA)IALL(IA,JA)KX

IJA £ RETURN

Figure 3-s. Subroutine TRANS (Continued)

3-33

*~~~j -7 .7-- - - -

TRAN

3AI

Q> C JC(Z 0(AZ

LA A4- >0 Z(LA,JA)

JS>J? .4 nJA 1 S

lgur 3-. Surutn ZN 'ol~u

3-YES
*'.~~~~E -. j. T * S 4 VV.. ' .

TRANS

STE

ICTPa 0

3.M

Figure~~~A 3-6 Sbotin RN Cniud

3-3a5

J"uINO(JR(IA1) ,JD(JA1))

JQMNO4(L1 =J(A 0 ,IAI JOAIJZ o)

JIinOIMZ(JR(IA)JR(IA)-JO

JPtCNTP-t

>00

3-36S

- . p. * ' J Z'IC *:u _:: na.--'* .

TRANS

JANOICNTPICN

JA > t?19

LA 01 PZ(IOIT) -0
YESJPZ(tcmT) * o

? sJsNio(J)__ ___

4.. 0 O141
3-37.1a

V~~~~K aV MBIG+ *:1 '

STEP

P(IAJA)(IIAJANO

MIA) >AJAP 0IYES A-)A

STEPU) 0 E

NO3

No JA aI 3ES38
JA > J

ENTRY ALTOPT (lMP)

ENTRY

ALTOPT

LL = 1
JM1-J-1
LAST - 1

YEYIES1 N

511IA>?

1E YES N

4A>J
Figur 3a6 Surutn TRAA (Continued)

IKC a 0JC3J3)=
......... *1 5120*.~**

YES YES
JA>JJ > JK+
JA.JAJ 1 NOw

5142 OR

lC'JA YESS I No

YES ? 140 YES (A>0

INREIC AL0 (APE>

RITE ALAP((ALOIJ)J) YE

JA JC(JA)-l)

NO IJA >J? YS JK -I011K
Figure~ 3-6 Suruin RN

(Cotined

...............................

7V 77

ENTRY ALTOPT

4&1011: 5150

YE 2NO REID ALTAP AL(AJ),S 1J,~lt

60010i

YEStN JSaINORALTAPE(ALOIN)J-,),A1I

3-4

LL LL *_j YE ic (is)I ~ ,. .. 4 %' 4. . .4.

>4 0

-~~~ ~ - 'NH-AL Qi

E2

YES JS >

*~2,s JLASTa Jl

No~l
10*l~z

YES1 ALO1,SJM-TSS(P

3-42-

ENTRY ALTOPT

140

160 150ST (IAT YES
JJP) YE JP =
>00

ICHAIN=CHAINO

165CHI)-LSTN

FPZ igure -6. SbotnJRAS(otPud

3-43 aP)=

~F IbU ~ pMSTi = IM ? .~.. . ~ . ,

JUST = JP YES *

ONTY ALTOPT

170

?a ?

?JUST.JNPVIM WWZN EP(IMHZN YESMILM~tPZ IASAIN J!IOAST) JLAST)

rIA0N 1I- MAS -LIN

[LS-P~cHAIN) CANIHI~

4Xu-JP44

Ffgurs 3-3. Subroutine -AWrS "Continuac)

3-44

.'oo

eM.TY ALTOPT

IMZ(LAST) a 12
1811 JNZ(LAST) a is

183

YESr IGOO. YESau~n 30 S

.3-4
.............~~~r~ YES, - ~ .. ,.%**,..)

~77

ENTRY ALLa(IA

YESLAST a~P(

L LAST?

?;r 35 Subrutn REA D(A Co TAPuE)

S4 E 80(MLOMJ)J-.~A11
YE3-46 1 14

R NO:x.. ALAd1A>

3.6.2 Functions

Subroutine TRANS begins by initializing the various arrays

it will use. Separate loops are used for personnel and materiel, al-

though both perform the same basic functions. The surviving assets

(from array IS) are put into array JR by task number. The team require-

ments for team NUMTRY (array ITEAMP or ITEAMM) are put into array JO

by task number. The total items or individuals represented in these

two arrays are then accumulated to get the total number of resources,

ISUM, and the total number of demands, JSUM. Next, the cost matrix

(P) which will be used is taken from either COSTP or COSTM, as appro-

priate. An extra column is added to this matrix and a cost of MSURP

is put into every cell. This column provides the costs for assignments

against any dummy demand, that is, surplus items.

A comparison of resource and demand determines the next step.

If resources are greater than demand (ISUM>JSUM), a dummy demand equal

to this difference must be created in order to complete the transpor-

tation problem. This, however, does not ensure a feasible solution. Develop-

ing feasible solutions, when only a complete feasible solution is required,

would be very time consuming. In those cases the variable ILV is set to 1

by the calling routine and a task by task check is made to see if it is

possible to fill the demand. If any demand is found impossible to fill the vari-

able NOTEN is given a value of I and control is returned to the calling

routine. If a possibility of fill exists for every demand, processing

continues. If ILV was zero when the call was made this check is skipped

entirely.

If the total demand was found to be greater than the total

resources, a dummy supply is created to balance the two. The variable

NOTEN represents the amount of dummy supply required. In this case

no feasible solution is possible and if ILV=1 control is returned to

the calling routine. If ILV=O a complete solution is desired and

3-47

* : + '+ ' ,', '. , -, . . , - ', - , , . -... -

processing continues. A row is added to the cost (P) matrix and the
cost in every cell is equal to MSURP, the cost for assignment of dummy

resources.

The allocation array (IALLO) and the arrays IR, JC, and Z

are zeroed prior to starting the transportation algorithm. The first

step of the transportation algorithm is to modify the cost matrix (P).

Step 1 - The smallest value in each column is found and sub-

tracted from each element in the column. The same procedure is followed

for each row. This results in at least one zero in every row and every

column.

Step 2 - Allocations are made through the zeros now in the

cost matrix. The value of an allocation is the minimum of the row

resources (JR) or the column demand (JD). This allocation is summed

into array IALLO and subtracted from the resource (JR) and demand (JO)

arrays.

Step 2A - After all possible allocations have been made a

check of all demands is made. If the demand has been satisfied (JO

(JA)=O), the column is flagged (covered) by a 1 in the appropriate ele-

ment of array JC. If all demands are zero, a solution has been found

and control returns to the calling routine. If unsatisfied demands

remain, processing goes to Step 3.

Step 3 - Find an uncovered zero in the P array. This is a

zero whose column flag (cover) in array JC is equalI to zero and whose

row flag (cover) in array IR is also equal to zero. The Z array is

used for flagging the zeros found in the P array. Flags in the Z

array then indicate possibilities for optimal allocations of resources.

The search starts by finding uncovered columns, JC()=). When an un-

covered zero is found, it is flagged with a 2 in the Z array. If the

3-48

% row of that P-O has resources remaining its Z flag is changed to 3 and

processing goes to Step 4. If the row does not have resources the row

is flagged (covered) by a 1 in the appropriate element of array IR.

This row is then checked for other elements of P which equal zero, lie

in a column which has been previously covered, and through which a pre-

vious allocation has been made (the corresponding element of the IALLO

array has a value greater than zero). This cell is then flagged with

a 1 in the Z array and its column cover, JC), is zeroed. Step 3 is

repeated until an uncovered zero (P=O) is located with remaining row

resources, thus directing processing to Step 4; or until all P=O ele-

ments are covered, either row or column or both, and processing is

directed to Step 5.

Step 4 - An uncovered zero element in the P array has been

found with resources remaining.- (If resources remain there must be a

demand somewhere.) If the column of this zero element- has a demand

the allocation is made. If the demand of this column has been pre-

viously satisfied there will be a zero in this column which is flagged

1 in the Z array. Further, the row of that zero will contain a P=O

element with an associated Z flag equal to 2. (These elements are re-

ferred to as plus (Z=2) and minus (Z=l) zeros by Munkres.) The columns

and rows are searched alternatively for these plus and minus zeros and

their locations are stored by count in the arrays IMZ (ICNTM), row in-

dices, and JMZ (ICNTM), column indices for minus zeros; and in arrays

IPZ(ICNTP), row indices and JPZ(ICNTP), column indices of the plus

zeros. Any prior allocations to the minus zero cells are stored in

array IBi, again by count. This results in a chain of plus and minus

zeros which guide an optimal reallocation. This chain will always

have an odd number of elements and the last will always be a P=O ele-

ment flagged 2 (plus) in the Z array. The minimum value is found of

the: resources in the row of the Z=3 element, the demand of the last

plus zero, or the previous allocations made through the minus zeros.

This is the maximum possible which can be reallocated, variable JQ.

The reallocation is accomplished by subtracting this amount from pre-

vious allocations at the minus zero cells and adding to the allocations

3-49

, ' ; :- -. ;.'- . .. ,. , € - , - .. ,;-o.. .-....... . -.-... . . -. -. . - . ,

I Vof the plus zero cells. The associated resource and demand elements

are adjusted accordingly. After the reallocation has been made the

remaining resources and demands are each summed and checked against

each other. If these totals are not equal an error STOP is made. If

demands are equal to zero, a solution has been found and control is

returned to the calling routine. If demands remain unsatisfied all

flags and cover arrays are zeroed and processing returns to Step 2A.

Step 5 - Step 5 is entered from Step 3 when all zeros in

the P array are found to be covered. The P array is searched to find

the minimum uncovered (IR0=O and JC0=O) element. This value is then

subtracted from all uncovered elements in the P array and added to all

twice covered (IR0=1 and JC0=1) elements. Processing then returns

to Step 3.

Entry ALTOPT - The purpose of this section of subroutine

TRANS is to locate any alternate optimal solutions. Possibilities

for alternate allocations are found in a manner quite similar to the

reallocation process in Step 4, above. An effort has been made in

ALTOPT to reduce the scope of the search required. In order to form

the chain of plus and minus zeros there must be at least two zeros in

any row or column that is included in the solution. rhe first step

in ALTOPT is to examine each row and then each column and cover by a

1 in the appropriate element of arrays IR or JC those that do not have

at least two zero elements in the P array. The uncovered rows and

columns are then counted and if either is less than two, no alternate

solution is possible and a return is made.

If the possibility of an alternate solution does exist the

original solution, array IALLO, is written to the file ALTAPE for

reference. The search is then started for an uncovered allocation with

an original cost equal to or greater than MSURP. This qualification

is used to identify "choke points." Alternate solutions involving

3-50

* changes in these allocations are the primary interest and therefore
4W the search is limited to them. This allocation is the start point for

the reallocation chain. Its row and column indices are filed in arrays

IPZ and JPZ and the associated element in array Z is set to 3.

Next, the row of this allocation is searched for an uncovered

zero element of array P. The Z array is checked for a zero value to

ensure that this cell is not already included in the chain. The loca-

tion is stored and Z is set at 2. If this is the column of the start

element the chain is complete, otherwise proceed to the next step.

If no unused P-0 is found, the Z of the previous element is set at -1

to indicate that no chain can be formed from it. The chain count is

decreased to provide the location of the previous element in the chain.

If this decreases the chain count to zero the process is started over.

The next step is to search the column of the last P=O for

an uncovered (IR()=O) allocation with P and Z elements also equal zero.

If none is found the chain count is decreased, the Z of the previous

element is set to -1, and processing goes to the row search or back to

start. When an allocation is found the location is stored, the Z of

this element is set to 1, and processing returns to the previous step

to search the row of this element for a P=0.

The chain is complete when a zero P element in the column of

the original Z=3 allocation is found. The Z for this cell is then

changed from 3 to 1. The minimum allocation to the cells flagged by

Z*l is determined and the reallocation of this amount is made. A

check is also made of the cost of each of these allocations, if the cost

of every allocation is MBIG then only the fake assignment of existing

assets is being rearranged and the solution is of -no interest. Reallo-

cation is made by subtracting this value from allocations previously

made to those cells designated by Z=1 and by adding to those cells

designated Z=2.

3-51

111MM
-.- .

The next step is to determine if this is a unique alternate
solution or a duplicate of a previously found solution. The variable

LAST is used to count solutions and is initialized to 1 on entry to

ALTOPT. If LAST-1 after a reallocation has been made, the solution

must be unique and is simply written to the file ALTAPE. In all other

cases the solution is compared, allocation for allocation, with each

previous solution in the file ALTAPE. If all allocations are equal

to any other solution this solution is discarded and search process

is started over. If the solution is unique it is written to ALTAPE,

LAST is incremented, and the variable MULTF is checked against the

number of solutions found. If MULTF=1, the process continues until

each solution found has been searched for alternates. If MULTF>I, the

process stops when that number of solutions has been found or the possi-

bilities have been exhausted. Each solution found is searched in turn

for alternates. The variable LL is the indicator of which solution

is to be read from the file ALTAPE to start each search.

3.6.3 COMMON BLOCKS

DLY3
GENERL
KTR1
KTR2
PD2
PRNTIT
WK1
WK2

3.7 SUBROUTINE CAPT (MP, MF, NUMTRY)

3.7.1 General

Subroutine CAPT (Figure 3-7) provides control for the calcu-

lation of the capability (fraction of teams found) at each time of

interest. Calculations are made by ICAP (initial, zero time, capa-

bility), WHEN (time when transfers are complete), and RCAP (capability

at each time after zero). Capability calculations are made at each

3-52

4l .

FROM -- VF- w S

". -.- of the input times and at zero time (before any transfers), at minimum

time (immediately after transfers start), and at infinite time (all

possible transfers made). The argument MP designates personnel (1)

or materiel (2), MF identifies the mission number, and NUMTRY is the

number of teams which can be formed as determined by MAXT.

CAPT initializes JMIN to zero and JMAX to the number of

teams built plus one, prior to calling ICAP. If no teams could be

constructed (NUMTRY=O) the initial as well as all other capabilities

are zeroed and no subroutine calls are made. JMIN and JMAX are used

by ICAP for a binary (two number) search to find the team which can be

formed using survivors in their own job only. This number of teams is

used to calculate TOTCAP (1, MF, MP), the zero time capability.

CAPT then calls subroutine WHEN for the calculation of the

time when each transfer will be completed and ready for operation.

The array RETURN is constructed by subroutine WHEN and contains, for

each time point, the number of each task available for team completion.

The array RETURN is then used by RCAP where the team require-

ments are matched to the available assets at each time. The capability,

TOTCAP, is calculated by RCAP for all times other than zero.

3.7.2 COMMON BLOCKS

GENERL
PD2
STATG
SURV

3-53

START) CAPT (MP,F,4MY)

IfTASK a NTASKSQ'U
jrulo

r ALIAqMNJXrEA .TA CAL M CP(n UtfRY VEl4)TR :IAK.1T 7T7 ,'P,

Figur 3-. SbrieCAP (I14JA. TEATS..VKYIO

I3le

-- ~.
YU

Vt

3.8 SUBROUTINE ICAP (JMIN, JMAX, ITEAM, NTASK, MF, MAX, IS)

3.8.1 General

Subroutine ICAP (Figure 3-8) is called by CAPT to find the

team which can be constructed using survivors in their original job

only., that is before any transfers have been considered. The argu-

ments JMIN and JMAX provide the initial bounds for the binary search,

of zero and one more than the maximum number of teams built (NUMTRY + 1).

ITEAM is a dummy for the set of team requirements, ITEAMP or ITEAMM,

being passed by CAPT. NTASK is the number of task lines being con-

sidered, MF is the mission number, MAX is the maximum team possible,

and IS is the array of survivors for this iteration.

Subroutine ICAP compares the survivors in each task line with

the requirements of a particular team number. If any task line has

fewer survivors than the requirement, then that team cannot be formed.<1 The first try is made using the team number mid-way between zero and

NUMTRY+1. If a team cannot be completed then JMAX is set at that team

number. When a team is successfully completed JMIN is set to that team

number. In either case the process is repeated for the team number

mid-way between JMIN and JMAX. The process stops if JMAX is reduced

to one, JMIN is increased to MAX, or the difference between JMIN and

JMAX is one. In any of these cases, except zero, JMIN is the number of

the last successful team and is passed back to CAPT.

3.8.2 COMMON BLOCKS

Subroutine ICAP contains no common blocks.

3

3-55

ICAP(JMIN,JMAX,ITEAl4J4TASK,MFJIAX,IS)

30 I)I

MA UM JM[N uNUMTh

MAXur 3Y8. EURtN YESAMI

41? >MAX6

.: NO.'

3.9 SUBROUTINE WHEN (MP, RTN)

3.9.1 General

Subroutine WHEN (Figure 3-9) determines the availability

time for all assignments made by subroutine TRANS. The argument MP

defines for the subroutine either personnel (1) or materiel (2). RTN

is the array, to be constructed by the subroutine, which will contain

the number of individuals or items available at each time for each

task. The time of availability is determined by summing all the times

associated with a particular transfer. These include transfer time,

delay (commander's decision) time, and for materiel the repair time

when appropriate. An option, IMEANT, is available to use the mean

times as input (IMEANT=I) or to use an exponential distribution for

each time (IMEANT=0). This dis-tribution is calculated by drawing a

random number, RANDOM, and getting a time, t, from the equation

t=i in (RANDOM), where 1 is the input mean time.

Subroutine WHEN contains separate loops for personnel and

materiel which perform the same basic functions. The first step is to

find all allocations with zero cost which have been made to their pri-

mary position (resource task number equals demand task number). These

allocations are then put into the RTN array by task number for each

time of interest, except zero time. (Zero time calculations are made

by subroutine ICAP considering survivors in their primary duty, only.)

These allocations are the only ones stored in array RTN (1, Task No.)

and subsequently considered for the "minimum time" team build. The

assumption is that even zero time transfers to another position result

in some disruption of the team.

The second step is to again examine the diagonal elements

of the allocation matrix, this time for those that have some cost

associated. This step provides the capability to represent delays

3-57

-.4- ' -.. .

7% 7 *.-77 7 . , 7-777-7 7. 7-7:.~

WHENJ~RT((J)4ALLOJJ

YEStJ)R~(IJ)aALIO No

~~igure 3. TIK. Suuie~E

3-58NIMS

NTAS-NTSKS MP

* - . - . * -I. - -.. . *. *

J~ > NTA ?

F 15 FOT TRANP)PF.J))OGRANOM

YES YES

rMEANT

N > 0 TIMRET - -F

RTN(NT2,J)-RTN(NT2,J)+1 N

YES I(2,Ila Thr)+

Figure~~~~~~ 3-9.- Surui?*E Cniud

0j~

YES59

.................

.W -. - -. - - . -. - . . -

WHEN

id2

YYS Kj4 aAD~ 1 NOR(

160 TLIRET(TP* LOG(RNOO1I

YES L> NTAKYES

-c>0

YES(NTYES-R -(NT2LOAT(RANJ SAN(1

YES YES
IMEANT

>0

YES 100

> 0 Tl

LYEESa2
4

*GO

.4O

r I.1,1 161. 0 _V '.l

Figure 3.9, Subroutine WHEN (Continued)

* WHEN

200

J > NTASAN?

220RCN(NT2,J) N RALNT,JJ)

YES YESTt1

K=RTN RANDOM -N(IRJ).1

Figure~F *~ Subrotine NE~ (ontd

143-61

-. .; ~ -. ~ ~~YES~
IMEANT

WHEN

W3

NTASKCGNTASK*

NO FJFLAT REPTIM(JG .1)(JG

NO > YES
NTASK

N FR=FLOAT(REPTIM(JG .2)

NO T>UYE

Figue ~g Sbrotin WN (Cntlue

3-62A(RPTMJL-

WHEN
WS4

YESRETaFI * LGNO t)

380 K>IA(RANDOM IIRTR

3363

- Iv v -. m

HHEN

231

TIMRIET-FT ALOG(RANDOM)_

NO
_4

YES
TMEANT
>0

RANDOM-BARN =1 FTIMRET= -FT

L

NO YES
IMEANT
> 0

kIMRET*TIMRET-FM ALOG(RANDOM) TIMRET-TIMRET+FM

245

RANDOM=BARN(I

NOU YES
IMEANT
>

PIMRET-TIMRET-FR ALOG(RANDOM)] TIMRET-TIMRET+FR

300

YES I a 2 NO
IRTW(NT2,L)-RTN(NT2,L)+l I >NT2-1 ? I l I-1

355 YES IMR
>

360
IMEST(I

NO

RTN(IL)-RTN(IL)+l

Figure 3-9. Subroutine WHEN (Continued)

_W -- - -- .m W1 X

• (iN,\ for individuals or items filling their own jobs. This may be appro-

priate in some applications. The only time considered here is trans-

fer time. Commander's decision delay time is not applied to any assign-

mernt to that item's primary function. The transfer time is either

modified by the exponential or used directly. Times are drawn for each

individual item of the allocation and each item is added to the RTN

array for the appropriate, and all subsequent, times. If the return

time, TIMRET, is greater than the greatest time of interest the item

is added to the RTN array for "infinite time."

Finally, all other (non-diagonal) allocations are examined.

The same steps as above are followed with all appropriate times being

considered for each individual of an allocation. The resulting array

RTN is returned to CAPT for subsequent use by subroutine RCAP.

3.9.2 COMMON BLOCKS

. OLYI

DLY2
DLY3
GENERL
SEED
WK1

3.10 SUBROUTINE RCAP (MAX, ITEAM, RTN, NTASK, NT3, TOT, MF, MP)

3.10.1 General

Subroutine RCAP (Figure 3-10) calculates the capability,

fraction of total teams formed, for personnel or materiel at each of

the times of interest, except zero time. (Capability at zero time is

calculated by subroutine ICAP.) This is accomplished by comparing

the available assets at each time, given in array RTN, to the require-

ments for the teams. When a requirement is found that exceeds the

available assets, that team cannot be completed. The previous team

number is used to calculate the fraction of total teams available at

3-65

..............,,".. ;','w .',,' . .. ",.......-.....' '....-.
• a •. . e~ . . .

RCAP(M4AX.ITEAI4,RTN,NTASK,NT3 ,TOT,MP449)

(START

NiW 0

~1guNO 3-0.Sbrutn RA

3-66r3

that time. The process is repeated for each time of interest and the
resulting capabilities are stored in array TOT by time slice, mission,

and personnel or materiel designation.

The argument MAX is the maximum number of teams which can be

constructed. ITEAMI is a dummy array which contains the personnel or

materiel team requirements, as appropriate. RTN is the array by time

slice of available assets established by subroutine WHEN. NTASK is

the appropriate number of task lines, personnel or materiel. NT3 is

the number of times input plus three. TOT is the array of capabilities

which are calculated by the subroutine. MF is the mission number and

MP designates personnel (1) or materiel (2).

3.10.2 COMMON BLOCKS

GENERL

3.11 SUBROUTINE ASN (MP, MF, NUMTRY)

3.11.1 General

Subroutine ASN (Figure 3-11) files the assignment matrix

information for each iteration in DEFINE FILE 22. This subroutine is

called by MAIN if the option flag ASSIGN is greater than zero. The

calling arguments identify personnel (MP=I) or materiel (MP=2), the

mission number (MF), and the number of the team (NUMlRY) which was

completed.

SubrouLine ASN first converts the integer values of the

allocations matrix (IALLO) to real numbers and stores them in array

ALLO. The DEFINE FILE record number, KOUNT, and record length, RLGTH,

are then calculated. Each record is defined by team number, mission

numnber, and either personnel or materiel. (See paragraph 3.11.3 below

for a discussion of the DEFINE FILE structure.) The appropriate record

3-67

is then read into array WORK and the data for this iteration is summed

with any previously stored data. WORK (1) is then incremented as a

count of the number of iterations represented by the data. The array

WORK is then written back into the appropriate DEFINE FILE record and

control is returned to MAIN.

3.11.2 COMMON BLOCKS

GENERL
WK1
WK2

3.11.3 DEFINE FILE 22

(1) Records are identified by team number, mission number,

and type (personnel or materiel). These records are filed in order as

follows: personnel team number from 1 to NTEAMS, mission 1, followed

by materiel teams from 1 to NTEAMS, mission 1. Each additional mission

follows in the same order.

(2) Data in each record is accumulated for all iterations

that team is constructed. The data in each record is filed as follows:

* Element 1: The number of iterations represented.
* Element 2: Redundant, equal to #1.
0 Elements 3-(NTASK+3): The assignments made of re-

source. in task #1 to the demands of each task or
to surplus.

* Elements (NTASK+4)-(2xNTASK+5) and subsequent
strings of length NTASK+1 are the assignment data
for each task, 2 thru NTASK, to fill any other
task or to surplus. For materiel the array is
further extended for the assignment data of ligh °

and then moderately damaged items.

0

3-68

-% . *'

--,

ASN(MP ,MF ,NUMTRY)

START

NO < YE

11 22
NTASK - NTASKS(MP)
NTASK1 -NTASK +1

Kiur 3-11.? SUB ON

3-691

ASN

60

RLGTH=NTASK*(NTASKS (MP)+1)+2
KOUNT=(NTEAMS*2)*(MF-1)

YES< MP> 1>NO

LKOUNTuKOUNT+NTEAMS

KOU NT: KOUNT+NUMTRY

K= K 1

70 L 1
YES L>TS1 NO

L -L +1 j j+ 1
70 WORK(J)=WORK(J)+ALLO(.K,L)

WORK(1)=WORK(1) +1.
WORK(2) - WORK(1)
WRITE (II'KOUNT)(WORK(L) L-1, RLGTH)

Figure 3-11. Subroutine ASN (Continued)

3-70

3.12 SUBROUTINE CHOKE (MP, MF, NUMTRY)

3.12.11 General

Subroutine CHOKE (Figure 3-12) calls subroutine TRANS to

solve the transportation problem given the requirements of the next

higher team number. This identifies those individuals or items which

are most critical to the reconstitution of higher capability. Sub-

routine CHOKE then stores this data in DEFINE FILE 21. Records are

identified by team and mission number for personnel or materiel. Data
in each record consists of the number Gf iterations, the number of

'alternate solutions found (when that option is exercised), and the

needs and surplus data developed from the allocation matrix which

has been completed by subroutine TRANS. The detailed structure of the

DEFINE FILE is given in paragraph 3.12.3 below.

Subroutine CHOKE is called by MAIN if the input option flag,

SCHOKE, is greater than 0. The call is made each damage replication,

each mission for both personnel and materiel. The calling arguments

identify personnel or materiel (MP), the mission number (MF), and the

number of the largest team which could be constructed from the avail-

able assets (NUMTRY).

Within the subroutine, the variable IFLG is used to indicate

if all teams attempted were constructed (IFLG=1). In that case there

will be no shortage and only data of surplus items is calculated. The

variable MULTF is an input option flag and if greater than zero a

call will be made to ENTRY ALTOPT, in subroutine TRANS, to attempt to

find alternate optimal solutions.

When subroutine TRANS solves the transportation problem, in

this case known to be infeasible, it will use either dummy supply or

infeasible assignments with a very large cost. In either case the

3-71

* '" assignment is easily identified and the demand filled by that assign-

ment is critical to, "chokes", the construction of that team.

The variable NOTEN, calculated in TRANS, is the number of

dummy supply items required to complete the transportation problem.

'If NOTEN is zero then no dummy supply was used and all "choke" assign-

ments were made using assets on hand. These assignments are identified

by a cost of MBIG, a large value which is calculated by subroutine

COSTMM. Any assignment which has been made in this way identifies a

need and is stored in array AVEN by task number. Since this assign-

ment is, in fact, not real the item that was assigned is actually sur-

plus and is therefore also added into the surplus array, AVES, by task

number. In the case of materiel this array is extended for each task's

light and moderate maintenance categories.

In the case where NOTEN has some value all needs are filled

by the assignment of dummy supply. It is therefore only necessary to

examine the dummy supply row (NTASK+1 or for materiel 3xNTASK+I) for
"choke" assignments.

Both surplus (AVES) and need (AVEN) arrays are constructed.

The WORK array is read from the appropriate record in the DEFINE FILE

and data from this iteration is accumulated into array WORK. This

array is then written to the appropriate DEFINE FILE record for later

use. (Seeparagraph 3.12.3 for DEFINE FILE structure.)

When alternate optimal solutions are found the average value

for both surplus and "choke" assignments are calculated on each iter-

ation. Additionally, the minimum and maximum value of each for all the

solutions found for a particular team are calculated.

3-72

3.12.2 COMMON BLOCKS

DLY3
GENERL
KTR1
KTR2
SURV
WKl
WK2

3.12.3 DEFINE FILE 21

(1) Records are identified by team number, mission number,

and by type (personnel or materiel). The records are filed in the

following order: personnel teams, from I to NTEAMS+1, followed by

materiel teams, from 1 to NTEAMS+1. This sequence is repeated for

each mission. The additional (+I) team count provides space for the

case when all teams are constructed and the "choke" data represents

the surpluses after the last team is built.

ib (2) Each record is an accumulation of data for all iter-

ations which "choke" on that team number. Data is stored in each

record as follows:

* Element 1: The number of iterations represented.
e Element 2: The total number of solutions found. If

multiple' optimal solutions are not examined or not
found this value will be equal to Element 1.

(a) No alternate optimal solutions considered:
(Note: NTASK is the number of personnel tasks
or 3 times the number of materiel tasks as
appropriate)

* Elements 3 -(NTASK+2): Needs for each task
* Elements (NTASK+3)-(2NTASK+2): Square of the

needs for each task.
e Elements (2NTASK+3)-(3NTASK+2): Surpluses for

each task.
e Elements (3xNTASK+3)-(4xNTASK+2): Square of the

surplus for each task.
@ The record for maximum teams +1 has data only

for surpluses. In that case the surplus data

3-73

CHOKE(MP ,MF,NUHTRY)

START

IFLG ;10
II *2

> NUNUM=NUM- 1

CALL TRANS(MP,NUM,MF,ISOURC ,0)

YES ?NTASK - NTASXS(MP)
MF51 -NTS

NOur 3-2 urutn HK

3YES

- - qb a -'

CHOKE

30

KOUNT- (NTEAf4S+1)*2*(MF.1

KO0T MP> N 1U

YESS
I FIGONTNTAM~

KOUNT-KUNTYES

?
NO

U. ..

0

U5 w

AAu

4!1

U.1

CIO

OU 0
ICA-

ooa

Ul m3-76

CHOKE

100

9ALATP(P

Figue 3-2. ubrotineCHOEWN (Cotined

3-7r

abC za -1W

61- 1 - In -

f" ~ ~ J. WU -C "L

ad 3 g - A 39 EM

15 1. + t-+

-EM a - O a a

.j-~ Z' ad3C ad

NWA-

3.- C4~

r- En A Ln 1A

aw C. ~ ~ fC.m
*a 4A I-b-4 - 0 1- 0-

- -~ 9L 14

a C.4
CY 04 04 ccI"

bc h ba d bc&C2

14,

ca oz N1

ma.

4- P- -- t N

CHOKE

C35

Y NS N,~.t o NOs

~~A1S~YE (3j OMS?

N01M.. K a . .

11 20 Y S.
IAL(*i

4A 4A

CA 1 WI.

z

rN 44

A. 44

wj A

C4L

4. .
emN

dc.

+=

3-8-1

V~qV '~'%:,~%-. ~.*,% .t

NO'* J*~*C

is written in the first two element strings,

the third and fourth strings are not used.

(b) Alternate optimal solutions are considered:

* Elements 3-(NTASK+2): For each task, the minimum
value need from all solutions found. (not
accumulated)

* Elements (NTASK+3)-(2xNTASK+2): Average need,
each task, for the solutions found.

* Elements (2xNTASK+3)-(3xNTASK+2): The maximum
value need, each task, from all soltuions
found (Not accumulated)

s Elements (3xNTASK+3)-(4xNTASK+2): Square of the
average need, each task, for the solutions found.

e Elements (4xNTASK+3)-(5xNTASK+2): The minimum
value surplus, each task, for all solutions
found (Not accumulated).

* Elements (5xNTASK+3)-(6xNTASK+2): The average
surplus, each task, for the solutions found.

@ Elements (6xNTASK+3)-(7xNTASK+2): The maximum
value surplus, each task, for all solutions
(Not accumulated).

* Elements (7xNTASK+3)-(8xNTASK+2): The square of
the average surplus, eacn task, for all solutions
found.

6 The record of maximum teams +1 has data only for
assignment to surplus. In that case surplus data
is written into the first four element strings
and strings five thru eight are not used.

3.13 SUBROUTINE STAT (TMEAN, TOTCAP, SD, GMEAN, GSD)

3.13.1 General

Subroutine (Figure 3-13) is the last subroutine called in

the damage iteration loop and is called immediately following com-

pletion of the mission loop and personnel/materiel loop. The primary

function of subroutine STAT is to accumulate capability data for all

iterations. The data is then further processed by subroutine OUTD

when all iterations have been completed.

3-81

STAT (ThEAN,TOTCAP,S0,GMEAN,GSO)

START

>.*ITC2 M TOTCAP(I,J,2)

AA z AM*IN1(TCI,TC2)

171EAN(I,J,3) = rihEAN(I,J,3)+AA

NMIONSD(I ,J ,3)=SD(It,J ,3).MA*AA

TTIEAN(I,J .1)TIEAN(I,J 4)4rc1

SD(I,J A)-So(I,J ,1jrCI*rC1

~~ThlEAN(I,J,2)=ThIEAN,'(I,J,2)+TC2

rx TE"P21.0SD(I,J,2)-SD(i',J,2) + TCZ*TC2

JS(>1=GD 2 ? TEP-Ml~(TOTAEI,),-P AP-L,

J21+1 XTEMPuTTAM(IN1()ToCAP(I,J,2),XTc MPr,,);E:p

vi IGMEAN1tJ1)uGMEEAN1t,,1) XTEM1
GSD(IJS)mS7,1,1).JxTEr 2 +T--P*

2-8

V 4 t- 1.* .. *>. -IF

V~~~~ S 4 . .*'.**.e*.* *..'- .

i~~~ . .lio

Capability data from array TOTCAP is accumulated into array

TMEAN for both personnel and materiel. The minimum value of the per-

sonnel or materiel capability is also accumulated into array TMEAN and

represents the maximum unit capability. The squares of each of the

capability values are summed into array SD for use in calculating the

confidence interval. All of the above arrays are indexed by time

period number, mission number, and personnel (1), materiel (2) or unit

(3) indicator.

Capability is also calculated for combinations of missions,

if there is more than one. This value is the minimum capability of

the missions considered. Array GMEAN is used to accumulate these

values. The square of each calculated capability is accumulated into

array GSD. Both of these arrays are indexed by time period and mission

combination indicator: 1=Mission 1 and 2; 2=Mission 1, 2, & 3; etc.

3.13.2 COMMON BLOCKS

GENERL

3.14 SUBROUTINE OUTD (TMEAN, SD, GMEAN, GSD)

3.14.1 General

Subroutine OUTO (Figure 3-14) is called by the MAIN routine

after all replications of a particular damage set have been completed.

This routine calculates the average capability and confidence inter-

val at each time of interest. Calculations are made for personnel,

materiel, unit, and mission combinations of unit capability. The

routine also calculates the integral (using the trapezodial rule) of

the unit and mission combination capabilities as a function of time.

Calculations are made using data accumulated by subroutine STAT on

each iteration. The arrays TMEAN and GMEAN contain summations of

capabilities computed each iteration. These data are simply divided

3-83

N ~ by the number of iterations to get the average values. Averages are
calculated in array TEMP for printing. The arrays SD and GSD contain

summnations of the square of the capability each iteration and are uksed

for calculation of the confidence interval. These values are calculated

in array STEMP for printing.

The confidence intervals are based on the t test of signifi-

cance for a 90 percent confidence level.- The basic equation is:

90 percent Confidence Interval, = t X N
(n) i ,7 /

V N(N -1
where: X.i = capability for iteration

a-' N = number of iterations
t n= table value of t for N-i degrees of freedom

)Values Of t(n) are input by a data statement in the subroutine. The

table of these values is not extensive but is sufficient to provide

reasonable accuracy in the calculations.

Calculations are performed and printed for one or two missions

I at a time, determined by how many missions are included. A maximum
of two missions can be printed per page and mission I does not require

the calculation or print of combined mission capability. Thus four

separate calculation and print loops are required.

"3-8

OUTD (T? EAN ,SD ,GMEAN ,GSD)

START

INITIALIZE VBLS.
INITIALIZE AREA UNDER CURVIE TO

4 IIISS ION RETURM
/PAGE'

+7E

NO

INCREMENT PAGE COUNT
TITLE PAGE

+

YES4MISSION A
.4. /PAGE,'i

(s OLYMISSION) IISSLfl NEAIGI

PRINT CAPABILITIES PRITCPBL!E

-I. OETAIL

11 00
~~~~~CUMULATIVE CUMM V

< PAGE ;mRgC! NT PAGE~ ? AG

.44

ALC"LAT C-1" AnEAt.. -- CUAT CUM AREA-
%j. ~It '.\q., :*'q .ONL IIS.N (1 'IS,'t RVI- . *G* *



OUTD

A

a.I DONE I DONE+2
(AT LEAST 2 MISSIONS

(.1stlu~ > Zn OH&OL

MISSIONS) TIES (NEXT TWO MISSIONS

PRINT CAPABILITIES PRINT CAPABILITIES

0 00
FO OFOR NO

CUMULTIVCUMULATIVE
ARAO AREA ON C
PAGE INCREMENT PAGEI < PAGE NCREMENT PAGE

& CONT ? & COUNT
YES YES

Figure 3-14. Subroutine OUTO (Continued)

3-86

e"'. %.



YES J aYES
JTEN(

rI 3
1W+RIEP() TE(,OuT,1o1)ZELOCENI ST.P.1 al

(4)nGMEANWRITEIOU,125 6TErP( )S(, DN .)FOTIRT)TEMP(I)4.1.

WR TE IO T04)=G TIMlE(-),T 
4 I STE MP()I YES4

FLATurAT)* P(4* 1. urutn u T MPont )-l

3-8
STV )-QTSTM()/FOT(TAE)l0

.5.. *5*5IG-SEM .........- OT-..ATE)

YES.,' S, .* 5 .



OUTD

WRITEC IOUT, 1008) ITRATE

YES 1aLCO NOMS1

II CT 1++tT S16 AE(Is(UDR2,)ANE(,))2G*IE(

ART(OT,01IOEAIuAEA)H*TESL)IE(L

Figure 3ld. Suboutine 1D Cotnud

YES I a3188
......................

*~q.M *~t.. .. . . . . . . . .

1 - l . .*E (2 1 + U D R( , ) / .0 * I E~

T fl.i



___. 3.15 SUBROUTINE OUTS

3.15.1 General

Subroutine OUTS is called by MAIN if the option SCHOKE is

greater than zero. Subroutine OUTS controls the printing of the

"choke" data output (Sensitivity Analysis Needs and Surplus). This

is accomplished by reading the first two elements (WORK(1) & WORK(2))

of each record in DEFINE FILE 21 to see if data exists in that record.

The subroutine operates through a set of nested loops over missions,

personnel/materiel, and team number, with the addition of one after

the team loop, for those occasions when all teams were constructed.

The variable WORK(1) is a count of the number of iterations

for which data is stored in that particular record. If alternate

optimal solutions were desired, MULTF greater than zero, WORK(2) is a

count of the total number of solutions represented by the data. If4 WORK(1) is zero then the next record is read until a record with data

is found. The regular output format will accommodate output for two

teams per page. When alternate optimal solutions are desired, an ex-

panded output format is used and only one team per output page can be

printed. Therefore, if MULTF>O subroutine PRNT is called each time

data is located. If MULTF=O the record number, KOUNT, is stored in

ITAG until a second record with data is located or until all team num-

bers plus one have been searched.

The call to subroutine PRNT is made with five arguments.

The first argument has no variable name in OUTS but is received by

PRNT as IFLG. Its values and their meanings are: O-multiple optimal

solution format is required; 1-output for only one team, regular for-

mat, is required; 2-output for two teams, regular format, is required;

and 3-end of team output format required.

3-89

"t ' " p' - ~.. .•............. ". ......... ... ....-........... ..... ... . ..



START OUTS

KOUNT 0
ITAG *0

II 2

j J~+

YES K__ __=_ __1_ __NO__

KUT C-2PN(OJ ?,K.K

A L N OUNTO?

NO

(OUNNT

AL LPRJ,1TAGJ,KUNT

LTAG = 0

Note i: (TEX', S- X X2 X iISONi

Figure 3-15. Subroutine OUTS

* -. *- 3-.90O.



OU)TS
A

CALLRNTNTJKOK1KOUT,3

KOUNT 3, _< STO

N 100

Note 1 * (UNT)(dRKs+1)xxwlso

Figre -1. Sbrotie OTS Cotined

WORK~l) YE3-YE
* - * A ~ .* . - * * * * * * * * * * * * * * *

-...



- W

.. The second and third arguments, J1 and K1, indicate the mis-

sion number and personnel (1) or materiel (2). The fourth and fifth

arguments pass the record number of data to be used by subroutine PRNT.

Both of these arguments are therefore used only when the first argu-

ment is 2. When the first argument is 0 or 1 then ITAG or KOUNT, as

appropriate, is passed as the fourth argument and the fifth argument

is zero. Both are zeroed if the first argument is 3.

3.15.2 COMMON BLOCKS

GENERL
KTR2
PRNTIT
WK2

3.16 SUBROUTINE PRNT

3.16.1 General

Subroutine PRNT calculates and prints the "choke" output

using data which has been accumulated and stored in DEFINE FILE 21 by

subroutine CHOKE (para. 3.12). Subroutine PRNT is called by subroutine

OUTS with calling arguments which indicate the type of data to be read

and output formatting required (IFLG), the mission number (J), person-

nel or materiel (K), and record numbers of data to be used (ITEM I and

ITEM 2). A local variable, ILAST, is used in conjunction with IFLG

for further definition of output format requirements. ILAST is given

values of I to 7 and is used as a pointer for the format of printing

top and bottom lines on the output.

Calculations in PRNT are made primarily by the functions

SIGMA, WORKFX, SQRTSG, and a duplicate set SIGMAI, WORKFI, and SQRTS1.

The data which is read from DEFINE FILE 21 is stored in array WORK for

use with the first three functions. If calculations and output of two

teams is required, the second data set is stored in array WORKI for

3-92
'*1' ' :' ; : ? : .,. . : ) ? .. / ...-... ,..? .... .-.-.-.-.-. , .,..-. ... . .



use with the second set of functions. Discussion will be limited to

one case using the array WORK, The precise structure of DEFINE FILE 21
is discussed in paragraph 3.12.3. In general, each record contains

data of needs and surpluses, and the squares of each, accumulated for

all the iterations that a particular team "choked." When the alternate

solution option is exercised the minimum and maximum value for both

needs and surpluses is also contained in the record.

Using the record number furnished by OUTS, subroutine PRNT
reads the appropriate data record. The function WORFX is used with

appropriate data elements to calculate the average need and surplus per

iteration for each personnel or materiel line item. The functions SIGMA

and SQRTSG are used in the calculation of the standard deviation using

the dummy variables SIGi and SIG2 for intermediate calculations in the
process. The calculation of standard deviation uses the general equa-

tion:

)0 ~ ~SD = _X 2

V N-1

where: N = number of iterations

Xi = value of needs or surplus for iteration i

= averaae value of needs or suroluses

3.16.2 COMON BLOCKS

DLY1
GENERL
KTR2
PRNTIT
WK2

3-93



7..74Vd. V 7-77 .

rmq-PRNT(IFLG,J ,K,ITEMl,ITEM2)

START

DEFINE SIGMA(IL,IA,IB,IC)uWORK(IL+IA+IB*NTASK3)-WORK(i)

*(WORK( 1L44A+IC*NTASK3)/WORK(i) )**2

DEFINE W4ORKFX(IL,IA,tB)UWORK(IL4IA4IB*NTASK3)/WORK(1)

DEFINE SQRTSG(SIGA)uSQRT(SIGA/(WORK(i)-i.O))

DEFINE SIGHAi(IL,tA,IB,IC)aW0RK(IL+IA+IB*NTASK3)-WORK1(i)
*(WORK(IL+gIAetC*NTASK3)/WORK1 (1) )**2

DEFINE WORKFI( IL,IA,IB)uWORK( IL+IA+18*NTASK3)/WORK1 (1)

DEFINE SQRTSI(SIGA)-SQRT(SIGA/WORK1(i)-i.O))

I - 21
Ni = NTEAMS + I

L9 - Il FG YS51 FLG YS ERROR STOP

Ll s 1 1 L-M~iPrint bottom line of
output form - format

YES determined by MLAST

Check to see if-new NTASK NTASKS(I,)
page is required - page 4TASK3 MTASK
or continue as required

K >~ A

IE TASKU IJASK3*3

4cure 3-13. Sucrou-.ii-e c'2T

3-94



PRNT

4) 200 400

- Malulte Optialitc u

Calculationsan oupu
-- PPRtIOuTutOutput oupueadere

-- Calculate appropriate

OREcr et 1 YE

e ealB- Read appropriaterer-Ontamot
-Calculteastatiticsrpu

s rn upu ny fe - Regar rcoke o To teamseob
datta oran atcat calculte antoutpu

call >u aton stt>tc

-ritOtuHedr- Print output-Prnoupthae

RuTiRN 1pCueal apropri
reroredle ngthS aRead appropriate recordte

-Calculate statistics re

srn upus ny fe - Reguad rcod fo ot teamseob

last tafmadaae- Pt output

calculations"statistics

- Print Output- Print output header

~Ihedr- Calculate appropriate____________

REcRd lecnglthths
Se OtlB- Read appropriater

Scalculateis statist si
- n O u H d- Print output

Cacuat Twopeamsfrriutpu
Second iseAfertas

Read Readprat eachcecor
Calclat Calculates sEtatsc

~~-Print output RTR

RETURN t~~eTm urponl

Figure 3-16. Subroutine PRNT (Continued)t

..... . .3-95



PRNT DETAIL (Calculate Needs Surplus -,or One Team)

LCONT aLCONr + NTASK * 11
RLGTI4 NTASK3*4

4j
<1 YE

a SC0S1SI40

3-30



LIG L * L(L,.ZZ

>IG SIG

II *- 2) IOV(LL.2..0

SR~j G1 - IIOK 1

S 2 - ..

4: 111 j.t
31I- OTG(iI

S13 * !IG.ALL23

3--797PS~r2
555 I .4;x : . S

110* 2) :O.hF< (LLS' .- 2!*
ES,* .iIRK 1 ;* * .'z 1r. .. K 2 .5,C-2 * *** .. . *

-
SP(



3.17 SUBROUTINE OUTA

3.17.1 General
C',

Subroutine OUTA is called by the MAIN routine if the option

flag ASSIGN is greater than zero. Subroutine OUTA controls the calcu-

lation and printing of assignment data by appropriate calls to subrou-

tine PRNTA. The routine reads the first element, WORK(l), of each
record in DEFINE FILE 22. The read is within a set of nested loops for

mission number, personnel/materiel, and team number. The first ele-

ment of each record is the count of the number of iterations for which
data was accumulated in that record. Subroutine PRNTA is called when

this element is greater than zero. The calling arguments are: J1,

mission number; KI, personnel or materiel; Li, team number; and KOUNT,

ethe record number found to have data.

3.17.2 COMON BLOCKS

GENERL
PRNTIT
WK2

3.18 SUBROUTINE PRNTA (J, K, L, KOUNT)

3.18.1 General

Subroutine PRNTA is called by subroutine OUTA for the calcu-

lation and printing of assignment data. Assignments of each item to

fill each requirement (the allocations made by the transportation

algorithm to build a particular team) are recorded in DEFINE FILE 22

by subroutine ASN (para 3.11).

The calling arguments furnished by OUTA are: J, mission

number; K, personnel/materiel; L, team number; and KOUNT, the record

3-98

.........- -........ v........ ... . . ......



OUTA

START

40UN 0ONhON+

NO K =1N

w~~~~L Noe : TEMS2*MIO

40 
-ON=ON+

,pp - ~ "i -. . *N O



number, in DEFINE FILE 22 to be read. The data in DEFINE FILE 22 is

accumulated for all iterations that a particular mission-team was the

maximum and represents the allocation of each particular item to the

fill of a requirement or to surplus. The first element of each record

is the number of iterations represented by the data. The record is

read into array WORK and element WORK(1) is used to calculate average

values for all other elements, the assignments. (NOTE: The element

WORK(2) is not used, assignment data for Task 1 begins in element 3,

WORK(3).) The average survivors for each task line are accumulated

into array PS to get totals.

The calculations and printing are made by task line for a

maximum of thirteen columns plus surplus and total. IFIRST and ILAST

define the limits for this procedure and only when ILAST is equal to or

greater than the numbers of tasks in the surplus and total for that

task printed. The variable IGM is used to indicate if a particular

row does have some value greater than zero in it. If all values in

a row are zero that row is not printed, except when the surplus and

total are to be printed.

Three sets of nested loops perform the calculations and the

output. The first set is used for both personnel and undamaged mat-

eriel. The second and third set perform the same functions but re-

quire different indexes for the assignment of materiel items in the

light and moderate damage categories.

3.18.2 COMMON BLOCKS

GENERL
PRNTIT
WK2

3-100



PRU1TA (J,K,L,KOUNT)

START

III =22
NTASK = NTASKS(K
NTASK1 =NTASK + 1
ITASK - NTASK

Page and Line count
checks -
Determine if new page
and heading is needed

RLGTH = NTASK1*NTASK + 2

READ I1I'KOUNT)(WORK(M1) ,M1=l,RLGTH)

ILAST =0

30

ILS

NOTS4MS

Figure 3-18. Subroutine PRMTA



A PR14TA

~~-i70i

* ba..YES Li a I NO

Ll >ITASK

~YE 1 MO

NO YES MM - IFIRS NO

N tLAST' >

TAS K

YES M IPIRST NO rS(L1,1)=PS(Ll,l)+WORK(JI.HtTASK1 /WO0RK(I1
M >ILAST

YES M9 - IFIRS
38 E M >ILAST

wRrrE(rOut,1009)LI(I.RK(M) ,t-FtrRST,rLAST)
'4' WRITE(IOUT,2001)WRK(NTASKI) ,PS(Ll,l) ,L1

IIRK l)i =IORK(Jl1tl1 W-ORK(1)

YES

< IM WRITE(IOUT,10 O)Ll,(WRK(M),z tFIRSTL WF

(JI lT+A S S17

Figjure 3-18. Subroutine PRNTA (Continued)

3-102



PRNTA

cYES Li NO
C Ci >ITASK

Li Ll+l

NO MLAST > YES
ITASK IPS(Ll*2)=PS(L1,2)+

WORK(J1+NTASK1)/WORK( 1)45 (Li 4)

YES M' IFRS NORT 4
Mi >ELAST+

1!IORK(J1+tI .1 a t1+1 WRK(M)
~~WORK(J1+-M) /WORK(!)_

I gure 3-18. Subroutine PRMTA (Continuec)
lWKM)WRKJ ./3R~~

IG3-1ES

*~~~~~~ 0* *.9.. ... *** .*

RITE(~tUT,009)L(WRK(l),M-F .STI**ST



-% - ~ - .. ~ - **- *.~~*** .... .7

C PRNTA

WIRITE IU,1i

NO M IAST NES

TAS PS(L1,3)-PS(L1,3)+

YES M IFIRT NOWORK(Ji4NTASKi/WORK(1l)+PS (Li ,2)1

YES M ILS1lN

0 uWORK(JI444)/WORK(i)

WIiTE(IOUT,1OO9) L1,(WRK(M) ,m~tFIRST,ILAST

JWIK M)-WRK(J1:M /WRK7)I IRIE(OUT,2O1)WRK(NTASK1),PS(L1,3),Ll1:

0~0 I
Ll-JITTSK±-

Figure 3-18. Subroutine PflNTA
(Conti nued)

* ~ **,.3-10d



3.19 PROGRAM PARAM

3.19.1 General

Program PARAM is used to read any input file and construct

a file of PARAMETER statements which define all the dimensioning var-

iables required by Program AMORE. These dimensioning variables must

be made available to the AMORE routine through the FORTRAN PROC ele-

ment GPARAM.

Program PARAM reads the AMORE input deck to obtain six of

the input variables. Those variables are: (1) number of times,

NTIMES; (2) number of personnel tasks, NTASKS(1); (3) number of mat-

eriel lines, NTASKS(2); (4) total number of authorized individual

personnel and materiel items, RANDS; (5) number of teams, NTEAMS; and

(6) number of missions, NMISON. These.variables are then used to cal-

culate a total of nineteen dimensioning variables. These variables

are fully defined in paragraph 2.2, Chapter 2.

PARAM reads from a file designated unit 5. The output is

written to a file designated unit 10. This output file must then be

transferred to a user designated file/element if retention is desired.

The Procedure Definition Processor (POP) must then be exercised on

this output to create the FORTRAN PROC.

3.19.2 Operation

A typical runstream is shown below:

@RUN
@ASG,A PROGFILE.
@ASG,A DATAFILE.
@ASG,T 10.
@XQT PROGFILE. PARAM/Abs
@ADD DATAFILE.GPARAM
@ED 10., PROGFILE.GPARAM
@PDP,FL PROFGILE.GPARAM, .GPARAM
VFIN

3-105"* , ;', " " " " "-%. " ," "," :','' , w" -. '- .'. . " ,-- ,," .". ., . ". . . . .- - - .- - - - . .
" Y ' :.: €, : :;., ,, ..,. -.,.,,x-, -....,......,. ., .... ,.:



The FORTRAN PROC, GPARAM is now available for the compile

of the AMORE model.

,3-106

• ,. % ' %% % .



PARA4
A

NTASKI a 14AX0(MTASIS(1),TASKS(2))
NTASK3 a MAXO(NTASKS(1),NTASKS(2)*3)

4 1(1 a NTII4ES + 3
K(2 - NMISON -1

K2 0

K2

M( a NTIMES +2
a 1(9 - NTASKS(2)-3

K 110 s NTASKI 1
1(11 a NTASK3 +
1(13 a NTASK3'8*2
K14 a 1(10'K11
K(16 a (NTEAMS.1)*2NISON.1
rRLP2 a t4TASK1(1)*(NTAS(S(1)4.1)4Z
IRLMZ a K94(',1TASKS(2).1)4.2
K18 !tAXO(IRLP2,IRLM2)

WRITE 'GPARAm PROC'
wRITE '1iU1EZ - NTIMES

11AMS' 'a NTEAMS
'IlISON' a NMISON
INilNOS' a BANDS
'Nl1KS1' a NTASKSM1
N11KS2' a NTAS1(S(2)
IN11SK1' m NTASK1
'I11S1(3' a NTASK3
N11K1' a 1(1
NI1KZ' a K(2
N11K4' a K(4
'N111(9' a K(9
'NilKID' a K(10
'NllKll' - 1(11
IN11K13' a K(13
IN11KI41 a K(14
'NIOX' K 116
'14RL21' K 13
'4RL22' K118

Figure 3-19. Program P-IRAM (Continuea)

.1'a 3-108



: - .- a : - , -* . b, " . ', - * .- .* 7 - . , , , -V . , , . ." - ' .. . .-, , . .

START PARAM

DIMENSION NTASKS(2)
INTEGER RANDS
RANDS = 0

READ - II - Dummy Read of Option Flag Card
READ - NTIMES (Number of Times)
READ - II(1,to NTIMES) - Dummy read of all times
READ-NTASKS(1) (Number of personnel tasks)

iN NTASKS(1)

Loop 10 (1 to N)
READ - II,III(name) + INIT1(Authorized Quantity)
RANDS a RANDS + INITI

[READ - NTASKS(2) (Number of Materiel Lines
IM =NTASKS(2

Loop 20 (1 to M)
READ - II,III(Name) + rNIT2(Authorized Quantity)
RANDS - RANDS + INIT2

ILoop 30 (1 to N)
READ Personnel transfer Matrix

I _
Loop 40 (1 to M)
READ Materiel Transfer Matrix

4
READ NTEAMS, NMISON

A

Figure 3-19. Program PARAM

. ..... .. .,.. ............ .... ..



SECTION 4

OPERATING ENVIRONMENT

4.1 HARDWARE

The AMORE model is operational on the UNIVAC 1100/82. The

model has no unusual requirements. Input can be either in batch card

form or from stored files of card images. Output requires a standard

line printer.

CPU Requirements

As noted in paragraph 2.2, the required dimensions for var-

ious arrays within the model are determined by six of the input var-

iables. These variables may be used to define a total of 19 param-

eters which must be in a FORTRAN PROC, "GPARAM". This PROC is INCLUDE'd

in each component of the mdoel. The program "PARAM" (para 3.19) pro-

vides the capability to construct this PROC file to fit the require-

ments of any input deck.

The model requires an IBANK of 12632 decimal words. The

following equation can be used to determine the DBANK requirement for

a given set of dimension variables as defined in paragraph 2.2.

N11NDS+2(N1IKS1)+2(N1IKSI) 2+6(NIIKS2)+4(N11KS2)
2

+20(N11SK1)+21(N11SK3 )+(N11SK1xN11MES)+4(N11SK1xN11SK3)

If Missions = I

+12(N11MES)+N11AMS(N11KS1+N11KS2)+10614

Or if Mission > 2

+(NIAMSxN11SON) (NI1KSI+N11KS2)+10(N11MESxNISON)
+30(N11SON)+10578

4-1



.; The DBANK requi-ed if the model is dimensioned for the example unit

in the Users Manual is 27050 decimal words. The input for that unit

v! had 24 times, 35 personnel tasks, 19 materiel lines, 375 individual

* personnel and materiel items, 18 teams, and 1 mission.

4.2 SUPPORT SOFTWARE

The program is written in ANSI FORTRAN and the UNIVAC ASCII

FORTRAN compiler @FTN must be used for compilation. The model uses

the random number generator BARN which is included in the CAA

LIB$*FTN. Transfer of the model to other facilities should ensure

the availability of a compatible random number generator.

4-2

",.4



7. ~ ~ 7. 7-. 77-- 7

APPENDIX A

MUNKRES' ALGORITHM

A.1 GENERAL

The simplest case of the general allocation problem is the

assignment problem. It is merely a situation which involves the

assignment of n available objects to n points of need, where some

cost accompanies each assignment. For example, a unit may require

certain skills to perform three tasks. If there are only three

personnel with these skills remaining in this unit, the unit

commander would probably make an estimate of how much time it would

take for each of these skilled personnel to move to each task location

and be prepared to perform the tasks. His estimate of those times

can be expressed in the cells of a matrix as shown in Figure A-i.

TASKS (DEMANDS)

A 20min 40min 30min

SKILLED
PERSONNEL
(RESOURCES) B 10 min 30 min 40 min

C 20min 10min 40min

FIGURE A-1.

The commander would likely wish to have the skills assigned as

quickly as possible, in order to reach full capability in minimum

time. Therefore, the total assignment time is to be kept to a

minimum.

A-i



J. 'iThe optimal solution is as follows:

Skl t akII ie= 0mn

Skill A to Task II Time = 30 min.

-~ Skill B to Task II Time = 1Q min.

Total time to assign skills is 50 min.

The transportation problem, is, in difficulty, only one

degree removed from the assignment problem. Instead of n objects to

be sent to n locations, the transportation problem involves n source

points and m destination points. Munkres' algorithm is a highly

efficient solution technique for the transportation problem which

assigns specific resources to meet specific demands in a manner such

4 that either a minimization or a maximization of cost may be obtained.

'S In the AMORE model, a minimum optimal solution in terms of time is
sought using Munkres' algorithm. Specifically, the demands are the

.~ .5.~.' mission requirements needed to incrementally build capability follow-

ing some form of degradation. The resources are the surviving per-
sonnel and materiel that can be assigned to satisfy the demands. The
costs are the times to transfer these resources, the delay time in the

decision making process, and in the case of damage materiel items,
repair times. If all resources are assigned and all demands are

satisfied, then a solution has been found. The cost of a solution

is then the sum of the cost of all assignments. An optimal minimum

solution is one for which this sum has the lowest possible value. The
AMORE process seeks a solution via Munkres' Algorithm, which minimizes

the total cost (in terms of time) of the assignments and therefore

minimizes the average time per assignment for unit reconstitution.

A- 2



A.2 ALGORITHM OPERATIONS

Munkres' algorithm first operates on the cost matrix to iden-

-~ tify efficient initial assignments. If these initial assignments result
in assignment of all resources and satisfaction of all demands, then an

optimal solution has been reached. If all assignments have not been

made, then Munkres' algorithm repeatedly modifies the cost matrix and

makes assignments until optimality is reached. These subsequent

assignments will be of two types: (1) a direct assignment of

unexhausted row resources to unsatisfied column demands, or (2) realloca-

tions of previous assignments to allow new resource allocations providing

minimum cost per assignment made.

A.2.1 Algorithm Steps

Munkres' algorithm, as used in the AMIORE process, consists

of five basic steps as outlined below. A solution may require one or

~ more of steps two through five to be replicated. Figure A-2 provides

a simplified flowchart of the algorithm processes.

STEP 1 Find the minimum cost in each column and
subtract that cost from each cost in the
column. Repeat the same procedure for
each row. This results in at least one
zero cell in each row and column. Go to
Step 2.

STEP 2 Make the maximum allocation of resources
possible through the zero cells in the
modified matrix. Adjust row resources
and column demands accordingly. Cover (flag)
those columns where demands have been fully
met (zeroed). If all columns are covered,
the solution is optimal; otherwise go to
Step 3.

STEP 3 Choose an uncovered zero cell and flag
it plus. If it lies in a row with
unexhausted resources, label it Zoand

A-3



STEP I
.11odification of the
basic cost matrix

STEP 2

Make allocations thru SOLUTION
zero cost cells -flag

S(cover) columns where 10ALL demands satisfijed
demand has been satisfi'.

STEP 3
Find an uncovered zero. If
its' rowv ias resources,
label it Zo and go to STEP
4. If the row has no re-
sources, label the zero
.plus and cover the row.
Search the row for a tw.~ice
covereo (row + column) zero
with allocations. Label it
minus and uncover its col-
umn~. Se-arch tis column
for an uncovered zero :back<
to start of STE? 3). If
all zeros are covered go to
STEP 5.

STEP STEP 5

SPrh Mt o rmSE Find. :ne smailest uncovered
.here is a Oinus-flaggea zero co-st. lecluce all uncovered
in its bW earcn the ee v- cost by that amount. Ifl-
too of that :ero 'or a olus- crease all tw.*ice covered
flagged zero. Continue (o oun ot yn
alternatively searching row (o oun ot > n

and olun 'r ~nnusanosame amount. Go :o STEP 3.
plus-Flagged zero's estab-
lishing a chain for realloca-
tion. -he last element will
be a plus zero with some
column demand and witm no
minus zero in the swwooti
leallocate, subtracting at

-, itinus-flagged cells inc add-
ing it olus-fiagged cells.
tail demana satisflea-

sol:t'on-,f not STEP 2. WHeaostsi iur A-

Figure A-2. Munkres Algorithm

A-4



go to Step 4. Otherwise cover the row.

If other zeros in the row lie in a
covered column and are in a cell having
an allocation, flag these zero(s) minus
and uncover the associated columns. If
all zeros are cuvered go to Step 5,
otherwise repeat step 3.

STEP 4 Beginning with Z search for a minus
flagged zero in he column. If none is
found, allocate the Zo cell the minimum
value of either the unallocated resources
of the Zo row or the unsatisfied demands
of the Zo column, decrease the Zo resources
and demands accordingly, remove all flags
and covers and go to Step 2. If a minus-
flagged zero is found in the column of Zo
then the row of that zero is searched for
a plus-flagged zero. This search pro-
cedure is continued, column then row,
forming a chain of plus and minus-flagged
zero's. The chain ends when a plus-flagged
zero is found with no minus-flagged zero
in its column. Next, determine which
value among the following is minimum:
the unallocated resources of the Zo row,
or the unsatisfied demand of the last plus
zero in the chain, or the minimum alloca-
tion through the minus zero cell(s). Allo-
cate the resultant minimum value to all
plus zero dells in the chain. Decrease all
allocations to minus zero cells in the chain.
Remove all flags and covers and go to Step 2.

STEP 5 Identify the least uncovered cost, sub-
tract it from all uncovered costs, and
add this value to all twice covered costs.
Retain all flags and covers and go to
Step 3.

A.2.2 An Example Application

A better understanding of the previously discussed five

steps of Munkres' algorithm can be gained by means of an example applica-

tion. Considering the initial cost matrix shown in Figure A-3, the

following sequence of algorithm steps derives an optimal solution for

A-5

-- lip



C the allocation problem. Note that in the cost matrix, R represents
resources available and D represents unsatisfied demands. Each cell
contains the cost for satisfying one unit of demand with one unit of
resource.

R'- 3- - -

1 129 116 19 31 20

5 5 21 15 28 33

17 30 0 22 13 33
3- 

-

3 5] 12" 32 14 2

FIGURE A-3. THE INITIAL COST MATRIX

Step One: Modification of the Cost Matrix for Initial Assignment. To
* '* find an efficient initial assignment, flunkres' algorithm makes use of
* the following mathematical principle: if a constant is added or sub-

tracted from any row or column of a cost matrix, then an assignment
set which minimizes total costs in the new matrix also minimizes total
costs in the original cost matrix. The algorithm: Find the minimum
cost in the first column. Subtract that cost from each cost in the
column. Repeat for all columns. Follow the same orocedure for each
row. Proceed to Step Two.

Step One produces a new matrix (Figure A-4) with at least one
zero in every row and every column. Maximal assignments of resources
in Step Two to these zero cells will be efficient. If such an assign-
ment process exhausts all resources, the solution will be optimal.

A-6



1 124 16 4 18 0

a 21 0 15 13

7 25 0 7 0 13

3 0 12 1 9

FIGURE A-4. COST MATRIX FOLLOWING STEP ONE

StepTwo: Make the Maximal Initial Assignment to the Modified Cost
Matrix: For each zero cell, "remaining" row resources and column

demands are compared. The lesser of the two is assigned to the cell
and the row resources and column demands reduced accordingly. After
all such assignments are made, all columns with satisfied demands are
flagged or "covered". If all columns are covered (all demands satisfied),

the solution is optimal. The algorithm: Make the maximum allocation
through the zero cells in the modified cost matrix. Adjust row
resources and column demands accordingly. Cover all columns whose

demands have been satisfied. If all columns are covered, an optimal

solution has been found. Otherwiise, proceed-to Step Three. Upon

completion of Step Two where a solutiori is not achieved,
the "covering" process paves the way for identifying further opportuni-
ties for allocation or reallocation (Figure A-5). The values within
the "triangled" upper right-hand corners of zero cells represent
allocations of resources assigned to these cells.

A- 7



COVER COVER COVER

0 0 1 0 3

0 24 16 4 18

0 0 21 0 15 13

1 25 0 7 0 13

3 0 12 17 1 9

FIGURE A-5. COST MATRIX FOLLOWING STEP TWO

Step Three: Create a Basis for Further Allocation or Reallocation.

There may be some zeros which are not covered after Step Two. These

uncovered zeros will be associated with columns whose demands are not

met and rows whose resources are exhausted. Otherwise Step Two would

not have been complete (i.e., either additional initial, assignments

A could have been made, or the column should have been covered). Step

T;iree will search for such uncovered zeros to be flaggcd lus, thicir

rows "ill then be covered and searched for zcros which arc now covered

twice (row and column). If there has been an allocation to the cell of

a twice covered zero it is flagged minus and its associated column is

uncovered. This may uncover some previously covered zeros. This flag-

ging process begins to map out a potential path for allocation or

-reallocation. The Step Three process ends with one of two conditions.

An uncovered zero is identified (to be flagged plus) in a row with-

resources remaining. Such a zero is identified as Z for allocation

and processing now branches to Step Four. Alternatively, all zeros are

found to be covered ahd processing branches to Step Five to modify the

cost matrix to create other zeros. The algorithm: Choose an uncovered

zero. Flag it as plus. If it lies in a row with unexhausted resources,

label it Zo and proceed to Step Four. Otherwise, cover the row. If

other zeros in this row lie in a covered column and are associated with

A-8

'_q. ; ,% - " . ---'U,.,-..



a cell that has an allocation, flag the zero minus and uncover its

associated column. Repeat the process until an uncovered zero, flagged

plus , is found to have resources remaining, then proceed to Step Four.

Otherwise, when all zeros are covered go to Step Five.

In applying Step Three to the example Cost Matrix, three

iterations of the step are required. Figure A-6 shows the first two

iterations as labeling first the (1,5) position and then the (2,3)

position with plus zeros. However neither qualify for being labeled

Zo as both rows have exhausted resources. This results in both rows

being covered. However, the latter plus zero row has another zero in

it which has an allocation (the (2,1) position) and is therefore

labeled minus zero. The column associated with that minus zero is

also uncovered. By virtue of uncovering the first column, the third

iteration then labels the (4,1) position plus zero and also Z . This

latter condition now satisfies the requirements for proceeding to

* Step Four.

AFTER ITERATIONS 1 AND 2 AFTER ITERATION 3

COVER COVER COVER COVER
0 0 3

RN 0 0 1 R D 0 0 1 0 3
Cove 0 24 16 4 18 0] Cover 0 24 16 4 18

- Cover

2 0 7 O 13 1 25 0 7 O 13

3 0 12 17 1 3 1+0z  12 17 1 9

FIGURE A-6. COST MATRIX FOLLOWING STEP THREE

A-9

: "',,',-', ';, .:r.,;'.;- ",." - ,-- --,. - - : . .. . ... .. .,. . . . ..



~ ~ Step Four: Execute a New Additional Allocation and Any Necessary

Reallocation of Resources to Demands. Step Four begins with a plus-

flagged zero designated Z0 in a row with unexhausted resources. One

* of two conditions will now apply.

if Z0lies in a column with no minus-flagged zeros, then a
comparison is made between the reamining row resources and the unsatis-

fied column demands. The lesser of the two is assigned. After such

allocation all plus and minus flags and all row and column coverings

are removed. Processing returns to that part of Step Two where all

demand satisfied columns are covered and the solution is then tested

for completeness.

Alternatively, Z0 lies in a column with a minus-flagged

zero which is designated Z. A search of the row containing Z1 is made

for a plus-flagged zero which is designated Z 2. The search process is

thus continued until a plus-flagged zero is identified which has no4 minus-flagged zero in its column. N'ext, a value for allocation is
determined. It is the minimum value of three sets considered. Set

One is the set of all allocations to cells containing minus-flagged

zeros in the above-identified chain. Set Two is the remaining resources

in the row containing Z 0. Set Three is the unsatisfied demand in the

column containing the last plus-flagged zero in the chain. The mini-

mum value of the three sets is chosen- for reallocation. Allocations

previously made through the minus-flagged zeros in the chain are

reduced by this amount and each of the plus-flagged zeros in the chain

is increased by this amount. The Z0row resources and the column demand
of the last plus zero in the chain are also reduced by this amount. All

plus and minus flags and row and column coverings are removed and

processing returns to that part of Step Two which covers all demand

satisfied columns and tests the solution for completeness or further

processing (Step Three). The algorithm: Beginning with Zosearch for.
minus-flagged zeros in the column of a plus zero under consideration,

A- 10

- . . a- ,*a~ a~.~*. ~.4



search for a plus-flagged zero in the row of the identified minus-

flagged zero. Continue until arriving at a plus-flagged zero with

no minus-flagged zero in its column. (This may occur when Z 0is the

only plus zero.) Identify as an allocation the minimum of the

Aallocations to all minus-flagged zero cells, the row resource atZ L
or the column demand of the last plus-flagged zero in the chain.

(When Z_ is the only plus zero the minimum of its corresponding row

resources or column demands is used.) Add this minimum value as the

'a' allocation to all plus-flagged zeros in the chain; subtract it from

all minus-flagged zeros in the chain. Adjust remaining Z rLow

resources and the unsatisfied last plus zero column demands accordingly.

If all demands are satisfied, solution is complete. Remove all plus

and minus flags and coverings. If demands are not satisfied, return

to that part of Step Two to cover all satisfied demand columns.

The chain established by completing Step Three consists of
the Z 0in position (4,1), the minus zero in position (2,1) and the

plus zero in position 1.2, 3). Applying Step Four to the left Cost
Matrix of Figure A-7, the minimum value among the Zorow resources,

the minus zero allocation(s) and the plus zero column demands in the

chain is the value of plus zero column demand (value = 1). By alloca-

ting this amount to the Zocell and by reducing the minus zero(s) in

the chain, the Z.row resource and the last plus zero column demand

by the same amount, the results are as depicted in the right Cost

Matrix of Figure A-7. Note that the flags and covers are also removed

upon completion of Step Four prior to returning to Step Two.

A-11



*. . . . . . . . .7... F. F. T% MCI

BEFORE STEP FOUR AFTER STEP FOUR

COVER COVER

0 1 0 3 RD 0 0 0 0 3

Cover 0 24 16 4 18 +0 0 24 16 18

Cover 1 0+ 21 03 15 13 - - -

1 25 0 7 0 13 1 25 O I 7 0 13

3 +O 12 17 1 9 2 O1 12 17 1 9

FIGURE A-7. COST MATRIX FOLLOWING THE STEP FOUR PROCEDURE

Returning to Step Two the appropriate portion of the algorithm

is repeated: Cover all columns whose demands have been satisfied. The

Cost Matrix becomes that shown in Figure A-8 before proceeding to Step

Three.

COVER COVER COVER COVER

R 0 0 0 0 3

0 24 16 4 18 0

0 0\! 21- 0 15 13

1 25 0 7 0 13

2 O1 12 17 1 9

FIGURE A-8. COST MATRIX FOLLOWING STEP TWO A SECOND TIME

A-12

.5 *t 4

; ' # ' 'P ', , w ,.? -. -.' ... -,.',,, , ..'.._, .;."-;.,.. ,..... . , . S... . .*. .. *..*v< -.;. .n....-. " ,S ", - .- "" ' -", -," l



. 7

Proceeding to Step Three again and the algorithm: Choose an

uncovered zero. Flag it as plus. If it lies in a row with unexhausted

resources, label it Z0and proceed to Step Four. Otherwise, cover the

row. If other zeros in this row lie in a covered column and are asso-

*0~*cdated with a cell that has an allocation, flag the zero minus and

uncover its associated column. Repeat the process until an uncovered

zero, flagged plus, is found to have resources remaining. Then pro-
ceed to Step Four. Otherwise, when all zeros are covered go to Step

Five.

Since all zeros are covered in the Cost Matrix (Figure A-9),
Step Five is next.

COVER COVER COVER COVER

R 0 0 0 0 3

Cover 0 24 16 4 18

0 0" 21 0N 15 13

1 25 O~ 7 0 13

2 0O 12 17 1 1 9

FIGURE A-9. COST MATRIX BEFORE ENTEnING STEP FIVE

Step Five: Modify the Cost Matrix to Produce New Uncovered Zeros:

All plus and minus flags and row and column coverings are retained.

Considering covered rows and columns, there are three sets of cells:

uncovered cells, single-covered cells, and twice-covered cells. The

- minimum cost in the uncovered cells is identified. It is subtracted

A- 13



.. ~ s.-...from costs in all uncovered cells creating at least one new zero cost

in an uncovered cell. It is added to costs in all twice-covered cells.

Costs in single-covered cells remain unchanged. Optimal allocations

on these adjusted costs will also be optimal for the original cost

matrix. Processing returns to Step Three. The algorithm: Identify

the least uncovered cost. Subtract this value from all uncovered costs.

Add this value to all twice-covered costs. Retain all plus and minus

flags and cover and return to Step Three.

The least uncovered cost in Figure A-9 is that found in

position (4,5) valued nine. Subtracting this from uncovered positions

(2,5), (3,S) and (4,S) and adding to to twice covered positions (1,1),

(1,2), (1,3) and (1,4) results in the cost matrix shown in Figure A-10.

COVER COVER COVER COVER

0 0 0 0 0 3

COVER 0 33 25 13 27 0

0~ 1 M 21i 4

FIGURE A-10. COST MATRIX FOLLOWING STEP FIVE

Again returning to Step Three and that part of the algorithm

which pertains: Choose an uncovered zero. Flag it as plus. If it

lies in a row with unexhausted resources, label it Z0and proceed to

Step Four (Figure A-11).

A- 14



COVER COVER COVER COVER

RD 0 0 0 0 3R 

3
COVER 0 33 25 13 27 0

0 0 21 0 15 4

'41 25 0 7 o\ 4

2 01 12 17 1 +oZo

FIGURE A-i. COST MATRIX FOLLOWING STEP THREE

Following that part of the Step Four algorithm which pertains:

Beginning with Zo search for minus-flagged zeros in the column of a

plus zero under consideration, search for a plus-flagged zero in the

row of the identified minus-flagged zero. Continue until arriving at

a plus-flagged zero with no minus-flagged zero in its column. (This

may occur when Z is the only plus zero.) Identify as an allocation

(in this case) the minimum of either the Z row resources or the Zo

column demanc4. Add this minimum value as the allocation to all plus-

flagged zeros (Z ) in the chain; and adjust remaining Z row resources

and the Z column demands accordingly. If all demands are satisfied,

solution is complete. Remove all plus and minus flags and coverings.

If demands are not satisfied, return to that part of Step Two to cover

all satisfied demand columns. This results in Figure A-12.

RD 0 0 0 0 1

O 33 25 13 27 0

O0 21 0 15 4

1 25 O X 7 4

0 0\ 12 17 1 0'

FIGURE A-12. COST MATRIX FOLLOWING STEP FOUR

A-is
I '-,'- , -, . " * 0* .", " . ", ' ", " .". . " . ". .. '. : , . . .,. '. . '.

.. . , , * , R' . "- <" .* .i-o , ,. ," ' * . ' . . ".* " ,,.,." ' ' ..... ;,'



.. P Again repeating the pertinent parts of Step Two's algorithm:

Cover all columns whose demands have been satisfied. The Cost Matrix

before proceeding to Step Three is as shown in Figure A-13.

_A COVER COVER COVER COVER

01O1'0 0 0 -01

0 33 25 13 27

0; 07 21~ 0 1
1 25 0 OJ
0o 121 1 1

FIGURE A-13. COST MATRIX FOLLOWING STEP T1O

) .Once more returning to Step Three and executing the algorithm:

Choose an uncovered zero. Flag it as plus. If it lies in a row with

unexhausted resources, label it Z and proceed to Step Four. Otherwise,

cover the row. If other zeros in this row lie in a covered column and

are associated with a cell that has an allocation, flag the zero minus

and uncover its associated column. Repeat the process until an uncov-

ered zero, flagged plus, is found to have resources remaining, then

proceed to Step Four. Otherwise, when all zeros are covered go to Step

Five.

After three iterations of Step Three the Cost Matrix results

in Figure A-14 with all zeros covered. This then requires proceeding

to Step Five.

A-16

* * . .



COVER COVER

0 0 0 01
R D

COVER 0 33 25 13 27 0

COVER 0 + 0 21 -0\ 15 4.

11 25 0 7 4

COVER z ix 1 z 1
FIGURE A-14. COST MATRIX-FOLLOWING STEP THREE

Repeating the Step Five Algorithm: Identify the least uncov-

ered cost. Subtract this value from all uncovered costs. Add this

value to all twice-covered costs. Retain all plus and minus flags and

cover and return to Step Three.

The least uncovered cost in Figure A-14 is that (value = 4)

found in position (3,5). Subtracting this value from positions (3,1),

(3,3) and (3,5) and adding it to twice covered positions (1,2), (1,4),

(2,2), (2,4), (4,2), and (4,4) results in the Cost Hatrix shown in

Figure A-15.

COVER COVER

D 0 0 0 0 1

COVER 0 33 29 13 31 +0

COVER 0 +OX 25 .0O 19 4

1 21 0l 3 0 0

COVER 0 0N 16 17 5 +02

FIGURE A-15. COST MATRIX FOLLOWING STEP FIVE

A-17
' 9 V ' / . 9 .9 ; : : ;'. - '* ;" -" " ' .5 -5 -" -, "'-. " . 5.. .. ..



Returning to Step Three again to execute only the pertinent

• part of the algorithm: 'Choose an uncovered zero. Flag it as plus. If

it lies in a row with unexhausted resources, label it Z and proceed to

Step Four. This results in the Cost Matrix depicted in Figure A-16.

COVER COVER

R 0 0 0 1

COVER 0 33 29 13 31 +

COVER 0 r0j 25 -03 19 4

1 21 0 31 0 0Q

COVER 0 0 16 171 5 +0

FIGURE A-16. COST MATRIX FOLLOWING STEP THREE

As with a previous execution of Step Four only the pertinent

parts of the algorithm follow: Beginning with Z search for minus-

flagged zeros in the column of a plus zero under consideration, search

for a plus-flagged zero in the row of the identified minus-flagged

zero. Continue until arriving at a plus-flagged zero with no minus-

flagged zero in its column. (This may occur when Z is the only plus

zero.) Identify as an allocation the minimum of either the Zo row

resources or the Z column demands. Add this minimum value as an

allocation to all plus-flagged zeros in the chain; and adjust remaining

Zo row resources and the Z column demands accordingly. If all

demands are satisfied, solution is complete. Remove all plus and minus

flags and coverings. If demands are not satisfied, return to that part

of Step Two to cover all satisfied demand columns. This results in

the complete solution (Payoff Matrix) shown in Figure A-17.

A-18

| .. . ,. "** .*.,*" " " " : " ," ,""" -". , ''""'.-,. .,''. ...-. ",".',.',':. .,.'-



R 0 0 0 0 0

O 3 13 29 1 31 0

0 0 25 0 19 4

o 21 0 3 0 3 0

10 0 16-1 17 5

FIGURE A-17. SOLUTION PAYOFF MATRIX FOLLOWING
THE LAST ITERATION OF STEP FOUR

Now that the solution is complete, the cost must be deter-
mined. By projecting the solution allocations onto the original Cost
Matrix the matrix.shown in Figure A-18 results.

129 16 19 31 2

- - -

21 15, 28 33

30 0 22 13X 33

5 2 3 14 292

FIGURE A-18. THE FINAL COST ANID ALLOCATION MATRIX

By multiplying each cell cost by the corresponding alloca-
tion to that cell and summling, the optimum (minimum,) total cost is
determined as follows:

(1X20) + (2X5) + (3X15) *(3X0) + (3X13) + (1X33) + (1X5) + (2X29) =210

A- 19



%J -. Z

A.3 ALTERNATE OPTIMAL SOLUTIONS

The basic Munkres Algorithm provides an optimal solution to

the allocation problem and also provides a convenient means for deter-

mining if other combinations of allocations exist which would also be

optimal. The modified cost matrix (called the payoff matrix) which

results from the solution of the basic problem provides this means.

If a resource allocation which has been made is applied to a

different demand, an equal amount of some previous allocation against

that demand must be reallocated, so that all demands are exactly met

and all resources are allocated. This process is repeated forming a

chain through the matrix. In order to keep the resource and demand in

balance, this reallocation "chain" must eventually reallocate an equal

amount of supply to the demand from which the original reallocation was

made. The reallocations made through this "chain" must be equal;

therefore, the largest possible reallocation which can be made will be

equal to the smallest of the original allocations.

The payoff matrix which resulted from the original solution

will always have zero values in cells where allocations have been made.

There may also be other zero values in the matrix which represent pos-

sible opportunities for reallocations. If a chain (complete loop) of

these zero values can be found, a reallocation made through that chain

will also be an optimal solution.

The process is as follows: Pick an allocation. Since it is

desired to move some of this allocation (subtract), this cell is flagged

with a minus. Now examine the payoff matrix row of that allocation for

a payoff value of zero (P = 0). Because we intend to add allocations

to this cell it is flagged as a plus. In the column of this P % 0,

find another P 0 0, this cell must have a previous allocation since we

A-20

"-' " .. '' ; ';. * , : 3 . 4> . . ,' '- ,, .% .. '._...* -. * ,, ,.. .. -_-._ _, . -.



V..0

~ must subtract from it and negative allocations cannot exist, this

cell is flagged minus. Examine the row of this cell for another P =0

and flag it plus. Continue this process until the chain returns to

the original allocation cell. Next examine all minus flagged cells to

find the smallest value of the allocations made to those cells. This

is the largest possible reallocation which can be made. (Any smaller

A- reallocation could also be made to provide an intermediate solution.)

This value is then subtracted from all previous allocations in the

minus flagged cells and added to the allocations in all plus flagged

cells. This completes the reallocation and results in a different

but still optimal solution.

An examination of the final payoff matrix from the previous

example problem (Figure A-18) shows that no alternate solution is pos-

sible. Therefore, an example of an alternate solution is provided by

the cost matrix shown in Figure A-19.

R 0 15 10 4 1

10 6. 5 4 '3

10 2 1 5 6

10 3 2 1 2

FIGURE A-19. ORIGINAL COST MiATRIX

Applying the five steps of Munkres' Algorithm to this cost

matrix the solution Payoff Matrix shown in Figure A-20 is derived.

7 o ZTOTAL COST =89
01 0\ 5 7

FIGURE A-20. THE PAYOFF I-1ATRIX

A-21
9 i V,.~. e4 ... : .* .



Although a number of reallocation combinations can be derived

from the example payoff matrix, the following development of a realloca-
tion chain presents a good representative sample for discussion pur-

poses. Beginning by selecting position (1,1) since it has an allocation,
it is flagged minus (Figure A-21).

-o 0 0 o '

o\"1 01 5 7

FIGURE A-21

.10 Examining the row containing this minus zero cell we find
two zero cells without allocations. For example purposes, the one
located at position (1,3) is selected and flagged as a plus zero

(Figure A-22).

ONI No o 0 o

FIGURE A-22

Now, searching the column of the plus zero, another zero with
an allocation is found (position (3,3)). This is labeled with a minus

(Figure A-23).

A-22

,Q, , i * .. ' """V.v-> -



777

FIGURE A-23

Next a search is made of this minus zero row for another zero

cell. Assuming the one at position (3,2) is selected, it is flagged

plus (Figure A-24).

o'X +OX 5 7

FIGURE A-24

Again searching the column of the last plus flagged zero for

a zero cell with an allocation, one is located at position (2,2). This

cell is flagged minus (Figure A-25).

\90 + 0 0N

0 O J 5 7

FIGURE A-25

A-23



Searching the row of this minus zero cell reveals another

zero cell at position (2,1). Labeling this zero cell plus and search-

ing its column, the chain is found to be" complete as the initial minus

flagged zero cell lies in this column (Figure A-26).

0 9 0 0o1
+01 O 5171o5o

FIGURE A-26. THE REALLOCATION CHAIN COMPLETED

By examining the minus flagged cells in reallocation chain

just developed, the minimum allocation among them is four in position

(3,3). By subtracting this amount from the minus flagged cells (posi-

tions (1,1), (2,2) and (3,3)) in the chain and adding it to the plus

flagged cells (positions (1,3), (2,1) and (3,2)), the reallocation is

completed as shown in Figure A-27. Note cell (3,3) now has a zero allo-

cation, and other allocations are also changed but the solution cost

remains the same.

o X

0 1Z TOTAL COST =89

FIGURE A-27. ALTERNATE SOLUTIONl

A-24

- . . * . * * .. .*..* . 'L. *


